
OAuch
Analyzing the Security Best Practices in the OAuth 2.0 Ecosystem

Pieter Philippaerts



“Once you have implemented 
OAuth2, how do you know you have 

implemented it securely?”





The OAuch logo is based on the OAuth logo created by Chris Messina. The logo is released under the Creative Commons Attribution ShareAlike 3.0 license.





Test Overview Authorization and Callback Window





Analyzing the OAuth 2.0 Ecosystem



What we did

› We tested 100+ OAuth implementations

94 deployed and publicly available services

17 OIDC providers, 77 OAuth 2.0 API providers

› We drew statistics over the sites and over the individual 

countermeasures



Supported Flows

API Providers

› 94% support Authorization Code 

flow

› 44% support Implicit flow

› 30% support Client Credentials 

flow

› 3% support Password flow

OIDC Providers

› 100% support Authorization Code 

flow

› 35% support Client Credentials 

flow

› 24% support Implicit flow

› 24% support Hybrid flow

› 6% support Device flow



Failure Rates

API Providers

› 38.0% average failure rate 

(±6.9%)

31% must failures

40% should failures

85% may failures

OIDC Providers

› 28.0% average failure rate 

(±7.0%)

22% must failures



Client Authentication

Client Type

› 1% support only public clients

› 1% support confidential clients (crypto key)

› 98% support confidential client (password)

However, 12% do not use/require the password



Client Authentication

Authorization servers must support the Authorization header

› Support is mandatory, but only 69% support it

› Other sites use form POST



Proof Key for Code Exchange

Authorization servers must support PKCE

› Only 12% of API providers support PKCE

Mostly ignored

Sometimes disallowed



Proof Key for Code Exchange

For the API providers supporting PKCE:

› None required PKCE

› 33% supported plain PKCE

› 44% allowed very short verifiers

› 56% were vulnerable to PKCE sidestep attack1

1 https://mailarchive.ietf.org/arch/msg/oauth/qrLAf3nWRt8HAFkO49qGrPRuelo/



Redirect URI Matching

Callback URIs must be precisely matched

› Only 48% of sites do this

Token endpoint must compare the callback URI with the one 

received in the authorization request

› Only 43% of sites do this



Authorization Codes

Authorization codes must only be used once

› 76% disallow code exchange

› 12% disallow code exchange and revoke previously granted 

access tokens

› 12% allow multiple code exchanges



Access Tokens

› Are mostly opaque (only 15% JWT)

› Are long (85% over 128 bits of entropy)

› Can often be used as URI query parameter (44%)



Refresh Tokens

› Are used by 66% of sites

› When refresh token rotation is used, refresh tokens must be single 

use 

Of these sites, only 34% prohibited exchanging the same refresh token 

multiple times

Active refresh tokens were never revoked



Access Tokens and Refresh Tokens

If refresh tokens are used, access token lifetime should be 

short

› < 1 hour: 36%

› < 8 hours and > 1 hour: 27%

› < 24 hours and > 8 hours: 10%

› > 24 hours: 27%



Some of the other results

› 26% allow authorization pages to be framed (mandatory)

› 29% allow the caching of sensitive values (mandatory)

› 70% do not suppress the referrer header (optional)

› 94% do not support form post response mode (optional)

› 85% allow parameters to be included multiple times (mandatory)

› 60% of OIDC servers do not support POST authorization requests (mandatory)

› 50% of OIDC servers did not require a nonce for the implicit flow (mandatory)

› 83% do not support token revocation (optional)

Of those that did, 42% accept revoked refresh tokens (mandatory)

› …



Work in progress…

› These results are a work-in-progress

The full analysis will hopefully be published soon

› The OAuch tool will be available at https://oauch.io/ (early 

September)

Offline download by the end of the year



Conclusions

› Having a formal verification of the OAuth2 protocol is great 

(and necessary)!

… but we also need tools to verify practical implementations

› A lot of sites can benefit from implementing missing 

countermeasures



Thank you!
https://distrinet.cs.kuleuven.be/

Pieter.Philippaerts@kuleuven.be


