
DR. PHILIPPE DE RYCK

API SECURITY IS TOO HARD!?

“ “
The Check Point team said it was able to use the information they found through

a routine examination of 23 random applications and access the backend
databases of 13 apps.

https://therecord.media/just-a-handful-of-android-apps-exposed-the-data-of-more-than-100-million-users/

“ “
Of the 30 popular apps Knight Ink tested, 77 percent contained

hardcoded API keys, some which don’t expire, and seven percent
contained hardcoded usernames and passwords.

https://www.bloomberg.com/press-releases/2021-02-09/
mobile-health-apps-systematically-expose-pii-and-phi-through-apis-new-findings-from-knight-ink-and-approov-show

@PhilippeDeRyck

START TAKING SECURITY SERIOUSLY

The cowboy years are over. Security is a crucial
requirement for every application from day 1,

and not an afterthought for a quiet period.

@PhilippeDeRyck

I am Dr. Philippe De Ryck

Founder of Pragmatic Web Security

Google Developer Expert

Auth0 Ambassador

SecAppDev organizer

https://pragmaticwebsecurity.com

I help developers with security

Hands-on in-depth security training

Advanced online security courses

Security advisory services

“ “Our accounts eventually got locked
and hidden for more verification

requirements. We tested retrieving
user data while our account was

locked, and it still worked.
https://blog.securityevaluators.com/
reverse-engineering-bumbles-api-a2a0d39b3a87

@PhilippeDeRyck

DO NOT RELY ON CLIENT-SIDE AUTHORIZATION

• Client-side authorization is common in API-based applications
• Frontend applications typically need authorization information to configure the UI
• Frontends deny access to features, hiding the ability to access prohibited API endpoints
• As a result, many APIs consider these endpoints unreachable and fail to protect them

• The attack surface of an API is the set of accessible endpoints
• The frontend does not play any role in the authorization process
• Sequential steps / transactions enforced by the frontend are not reliable

• E.g., Twitter sending a read status update from the frontend
• Undocumented or hidden API endpoints are also part of the attack surface

• All API functionality is defined by its endpoints, independently of the frontend
• This includes transactions and proper authorization decisions

@PhilippeDeRyck

THE CLIENT IS IRRELEVANT FOR SECURITY

The attack surface of an API
consists of all accessible endpoints,

regardless of how and if they are used by the client

? How can we use frontend authorization
as a security feature?

@PhilippeDeRyck

USING FRONTEND AUTHORIZATION TO DETECT MALICIOUS BEHAVIOR

• APIs remain responsible for enforcing proper authorization decisions
• Authorization policies ensure that access to endpoints is allowed
• Data validation techniques ensure that provided data is valid

• Frontend applications can mimic server-side authorization/validation logic
• This improves the user experience (E.g., hiding features, quick feedback on input)
• In this case, the API's authorization and validation policies should never fail

• If they fail, it is likely that someone is messing around with the application
• Keep track of such failures to detect malicious users (and take pre-emptive action)

• The OWASP AppSensor project focuses on such security patterns
• It defines a framework and methodology to detect incoming attacks
• AppSensor also provides a set of entry points where malicious behavior can be detected

@PhilippeDeRyck

THE CLIENT IS IRRELEVANT TO ENFORCE SECURITY

Strict security controls on the client make your API
security controls an effective detection mechanism

for malicious behavior

“
“

To reset a password,
Grindr sends the user an

email with a clickable
link containing an

account password reset
token.

Grindr’s password reset
page was leaking

password reset tokens to
the browser.

https://techcrunch.com/2020/10/02/grindr-account-hijack-flaw/

@PhilippeDeRyck

EXCESSIVE DATA EXPOSURE

• Many APIs expose too much data to the client
• Excessive data exposure is ranked #3 in the OWASP API Security Top 10
• This problem is often "invisible", because the frontend does not use the excessive data
• Real-world incidents lead to account take-over, location triangulation, …

• A common cause of this problem is the automatic marshalling of objects
• Often, data objects are directly transformed into JSON by the API controller
• Data objects often contain sensitive fields which should not be sent in responses

• E.g., password fields on user objects, admin-only or hidden fields, …

• Avoiding the leaking of data is often quite difficult
• Marking fields as internal-only is a coarse-grained strategy
• Exposing data based on the user's permissions requires smart authorization policies

? If an API automatically exposes data, does
it also automatically accept data?

The Java class of the User object

1
2
3
4
5

class User {
String name;
String email;
String password;

}

The body of a legitimate request to update the user's name

1
2
3

{
"name": "Dr. Phil"

}

The body of a malicious request to update the user's name

1
2
3
4
5

{
"name": "lol",
"email": "evil@maliciousfood.com",
"password": "$2y$13$VeZMDUpYdTvXs7/HB68KPeeetomDafc4huZGE/zr9V4318bWRcDxu"

}

The API uses a framework that
automatically transforms JSON data
into domain objects, which are then

used to update the persisted data

Without filtering the input
properties, the API becomes

vulnerable to mass assignment

@PhilippeDeRyck

MASS ASSIGNMENT

• Many APIs fail to restrict the data fields that a client is allowed to update
• Mass assignment is ranked #6 in the OWASP API Security Top 10
• This problem is "invisible", since the frontend never assigns values to these fields
• Real-world incidents lead to overwriting passwords, updating product prices, …

• A common cause of this problem is the automatic marshalling of objects
• Incoming JSON data is automatically transformed into internal data objects
• When JSON fields are not restricted, the JSON can include any field that exists on the object

• E.g., password fields on user objects, a price field for a webshop product, …
• Data storage frameworks often use this data to auto-update objects in storage

• Avoiding mass assignment is often not straightforward
• One strategy is to transform JSON data into a data transfer object (DTO) first
• Dynamic assignments based on the user's permissions require smart authorization policies

@PhilippeDeRyck

TEST YOUR APIS IN THEIR NATURAL HABITAT

Make sure your API behaves the way you think it
does. Code analysis is only one aspect. Runtime

testing is necessary to get the full picture.

D

? A

B

C

Defining an API contract for each endpoint

What is the best strategy to avoid data
exposure / mass assignment problems?

Obfuscating the code of the frontend application

Deploying a Web Application Firewall

Carefully testing each API endpoint

https://engineeringblog.yelp.com/2020/01/automated-idor-discovery-through-stateful-swagger-fuzzing.html
https://www.microsoft.com/en-us/research/blog/restler-finds-security-and-reliability-bugs-through-automated-fuzzing/

@PhilippeDeRyck

An example of a YAML-based OpenAPI contract

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

openapi: 3.0.0
info:
title: Restograde API
description: The Restograde API
version: 0.0.1

servers:
- url: https://api.restograde.com
description: The Restograde production API

paths:
/restaurants:
get:
summary: Returns a list of restaurants.
description: Restaurants are awesome. So are you!
responses:
'200': # status code
description: A JSON array of restaurant names
content:
application/json:
schema:
type: array
items:
type: string

@PhilippeDeRyck

AUTOMATED API SECURITY TESTING

• OpenAPI contracts are the de-facto standard for describing modern APIs
• OpenAPI contracts can be used for contract-first development
• OpenAPI contracts serve as input for testing and documentation generation

• An OpenAPI contract defines requests and responses for endpoints
• HTTP methods, content types, request body and response structure
• Data objects can be defined with re-usable data models

• API security tools can use OpenAPI contracts to determine legitimate traffic
• Fuzzing / scanning tools use contracts to generate automatic test cases
• Gateways / firewalls use contracts to determine the nature of legitimate traffic

@PhilippeDeRyck

USE SWAGGER/OPENAPI DEFINITIONS FOR SECURITY

Write Swagger/OpenAPI definitions to specify the
behavior of your API. Security tools consume such

definitions for automatic detection and protection.

@PhilippeDeRyck

A Python Flask API endpoint

1
2
3
4
5

@app.route('/')
def my_first_api_endpoint():
json_data = json.loads(request.data)
...
return "", 200

Which HTTP methods are
accepted by this endpoint?

“
“

An examination of
enterprise endpoints

using GraphQL
revealed that

configuration issues
in implementations
might be exposing

systems to
unnecessary risks.

https://portswigger.net/daily-swig/overlooked-vulnerabilities
-in-graphql-open-the-door-to-cross-site-request-forgery-attacks

@PhilippeDeRyck

A Python Flask API endpoint

1
2
3
4
5

@app.route('/', methods=['POST'])
def my_first_api_endpoint():
json_data = json.loads(request.data)
...
return "", 200

Flask defaults to GET, but supports
explicit configuration of allowed

HTTP methods

@PhilippeDeRyck

ENSURE UNEXPECTED HTTP METHODS ARE REJECTED

Every API endpoint should be tested to ensure it
only accepts expected HTTP methods

and rejects all other methods.

@PhilippeDeRyck

A Python Flask API endpoint

1
2
3
4
5

@app.route('/', methods=['POST'])
def my_first_api_endpoint():
json_data = json.loads(request.data)
...
return "", 200

Which HTTP content types are
accepted by this endpoint?

“ “Zhu also investigated whether other sites’ authenticated
endpoints similarly accepted POSTs with content-type:

text/plain, despite expecting JSON.

https://portswigger.net/daily-swig/vulnerability-in-dating-site-okcupid-could-be-used-to-trick-users-into-liking-or-messaging-other-profiles

@PhilippeDeRyck

A form that generates valid JSON upon submission

1
2
3

<form method="POST" enctype="text/plain">
<input type="hidden" name='{"title":"' value='...","content": "..."}'>

</form>

CONTENT TYPE CONFUSION

• Content type confusion can lead to CSRF attacks on JSON endpoints
• Form fields can be named in such a way that the data becomes valid JSON
• The form can be defined with a text/plain content type, which submits raw text data
• A JSON parser will see the data in the body as valid JSON

• Ensure that the backend rejects unexpected content types
• A backend allows form-submitted JSON can become vulnerable to CSRF attacks
• JSON endpoints should only accept application/json content types

@PhilippeDeRyck

A Python Flask API endpoint

1
2
3
4
5

@app.route('/', methods=['POST'])
def my_first_api_endpoint():
json_data = json.loads(request.data)
...
return "", 200

By default, Flask accepts any content
type, including JSON, form-based
content types, and "text/plain"

Using request.json instead of
request.data only returns a value if the
content type is set to "application/json"

@PhilippeDeRyck

Restricting content types in Flask

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

Decorator to restrict content types
def content_type(allowed_content_type):
def decorated(f):
@wraps(f)
def wrapper(*args, **kwargs):
ct = request.headers.get('Content-Type', '')
if ct.lower() == allowed_content_type.lower():
return f(*args, **kwargs)

raise UnsupportedMediaType
return wrapper

return decorated

@app.route('/', methods=['POST'])
@content_type('application/json')
def my_first_api_endpoint():
json_data = request.json
...
return "", 200

This endpoint only accepts
POST requests with the

content type set to
"application/json"

@PhilippeDeRyck

REJECT UNEXPECTED CONTENT TYPES

APIs should not be flexible in the way they accept
incoming requests. Define the expected content

type and reject anything else.

@PhilippeDeRyck

An example of a YAML-based OpenAPI contract

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

openapi: 3.0.0
info:
title: Restograde API
description: The Restograde API
version: 0.0.1

servers:
- url: https://api.restograde.com
description: The Restograde production API

paths:
/restaurants:
get:
summary: Returns a list of restaurants.
description: Restaurants are awesome. So are you!
responses:
'200': # status code
description: A JSON array of restaurant names
content:
application/json:
schema:
type: array
items:
type: string

This OpenAPI definition
clearly states the expected
HTTP method (and content

type for POST requests)

@PhilippeDeRyck

MAKE OPENAPI DEFINITIONS YOUR NEW RELIGION

OpenAPI definitions are unambiguous and contain
tons of relevant information. Integrate them into

your SDLC from the early design phases.

@PhilippeDeRyck https://hackerone.com/reports/341876

@PhilippeDeRyck

1 Request with a URL as data

4 Response

2 Load resource with URL

3 Response

A request from the browser with a URL as data

1
2
3
4

POST /restaurants HTTP/1.1
Host: restograde.com

name=My+Restaurant&img=https%3A%2F%2Fimg.example.com%2Frestaurant.png

1

A request from the backend to fetch the image from the provided URL

1
2

GET /restaurant.png HTTP/1.1
Host: img.example.com

2

@PhilippeDeRyck

1 Request with a URL as data

4 Response

2 Load resource with URL

3 Response

A request from the browser with a URL as data

1
2
3
4

POST /restaurants HTTP/1.1
Host: restograde.com

name=My+Restaurant&img=any endpoint

1

A request from the backend to an arbitrary attacker-provided endpoint

1
2

GET /anyEndpoint HTTP/1.1
Host: anyserver.example.com

2

@PhilippeDeRyck

1 Request with URL parameter

4 Response

Internal servers

localhost

External servers

SSO / token endpoints

Cloud metadata servers

Perimeter / VPC / Firewall / WAF / …

“
“

https://krebsonsecurity.com/2019/08/what-we-can-learn-from-the-capital-one-hack/

The type of vulnerability
exploited by the intruder
in the Capital One hack is

a well-known method
called a “Server Side

Request Forgery” (SSRF)
attack, in which a server
(in this case, CapOne’s

WAF) can be tricked into
running commands that it
should never have been

permitted to run,
including those that allow
it to talk to the metadata

service.

@PhilippeDeRyck

SERVER-SIDE REQUEST FORGERY (SSRF)

• The attacker controls a URL, tricking a server into making a request
• SSRF typically results in a GET request being issued, but POST requests also occur
• The attacker can provide an arbitrary target URL, including parameters

• E.g., loading images, calling internal systems, executing webhooks, …

• SSRF executes within the application's perimeter, increasing its potential
• Publicly unreachable services become reachable
• Requests can include authentication information when added automatically

• E.g., by token middleware or mTLS configuration settings

• SSRF is a server-side variation of Cross-Site Request Forgery (CSRF)
• With CSRF, the request is launched from a user's browser
• CSRF attacks targeting employees or admin also gave the attacker internal access

? So how can we restrict destinations of
server-side requests?

D

? A

B

C

A carefully-selected IP address validation library

Which of these mechanisms are suitable to
ensure an IP is not pointing to localhost?

String-based matching

A regular expression

A custom validation function

@PhilippeDeRyck

127.0.0.1Normal IPv4 address(dotted decimal):

127.10-optimized dotted decimal:

127.0.000000000000000000000000000000000010-optimized dotted decimal:

0177.0.0.01Octal:

00000000177.000.0.00000001Octal:

0177.0.0.0000001Octal:

0000177.000000000000000000.00000000000.00000000001Octal:

0x7f.0x0.0x0.0x1Hexadecimal:

0x7f000001Hexadecimal:

0xDEADBEEF7f000001Hexadecimal:

0xBADF00D7f000001Hexadecimal:

0xBAAAaaa7f000001Hexadecimal:

2130706433Dword (non-dotted decimal):

01111111000000000000000000000001Binary:

00177.1Mixed:

0x7f.1Mixed:

127.0x1Mixed:

0000000000000:0000:0000:0000:0000:00000000000000:0000:1IPv6:

0000:0000:0000:0000:0000:0000:0000:0001IPv6:

0:0:0:0:0:0:0:1IPv6:

0:0:0:0::0:0:1IPv6:

http://%31%32%37%2E%30%2E%30%2E%31URL-encoded:

http://[%3A%3A%31]URL-encoded:

The last two require a mechanism
that will URL-decode the IP

addresses at input time

https://www.hacksparrow.com/networking/many-faces-of-ip-address.html

RESTRICTING IP ADDRESSES

• IP address validation cannot be done with regexes or custom code
• It is extremely likely that bypasses against such mechanisms exist
• Highly recommended to use a solid IP address library
• Process the input with the library and validate the normalized output of the library

https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

“
“

The code logic was
utilizing simple Regular
Expression, therefore

not accounting for
variations of localhost,

and other private-ip
ranges, as predicted,”

the researchers
explained.

https://portswigger.net/daily-swig/vulnerable-npm
-security-module-allowed-attackers-to-bypass-ssrf-defenses

@PhilippeDeRyck

USE A SOLID IP ADDRESS LIBRARY

Inspect your IP address library to ensure it properly
handles IP address validation. Aim to normalize

addresses before analyzing them.

DEALING WITH DOMAINS

• Domains are a bit more straightforward, but involve the use of DNS
• Validate input using a proper domain validation library

• An attacker can setup their own DNS to resolve domains to internal IPs
• Resolve domains to an IP address to validate the final destination

https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

? Domains are fine, but how do you handle a
URL in a callback or webhook?

ACCEPTING URLS

• Use a URL parsing library to parse the URL
• Validate the result to ensure it matches what you expect

https://cheatsheetseries.owasp.org/assets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet_Orange_Tsai_Talk.pdf

https://cheatsheetseries.owasp.org/assets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet_Orange_Tsai_Talk.pdf

ACCEPTING URLS

• Use a URL parsing library to parse the URL
• Validate the result to ensure it matches what you expect

• Try to avoid accepting URLs from the user as input
• When only allowing a select number of URLs/hosts, allow ID-based selection from a list
• Fall back on using domains or IP addresses instead of full URLs

• When accepting a URL is unavoidable, accept as little information as possible
• E.g., force https:// instead of rejecting file://, phar://, gopher://, data://, dict://, …
• To avoid weird side-effects, it is recommended to accept input in pieces

• E.g., make the client submit URL data in parts (scheme, host, path, parameters, …)
• Validate each piece as strict as possible (e.g., reject # or ? in the host part)

• By leveraging the browser's URL parser, the UX with a single URL can be preserved

@PhilippeDeRyck

The code handling the URL input

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

function saveUrl() {
let strUrl = document.getElementById("cb").value;
let url = new URL(strUrl);

let urlData = {
"scheme": url.protocol,
"hostname": url.hostname,
"port": url.port,
"path": url.pathname,
"params": url.search,
"fragment": url.hash

}

// Send this data to the backend for processing
}

The data received by the API

1
2
3
4
5
6
7
8

{
"scheme":"https:",
"hostname":"restograde.com",
"port":"",
"path":"/callback",
"params":"",
"fragment":""

}

The browser's URL
parser is used to parse

the URL into
components

There is no confusion
about the meaning of

the data anymore

ACCEPTING URLS

• Try to avoid accepting URLs from the user as input
• When only allowing a select number of URLs/hosts, allow ID-based selection from a list
• Fall back on using domains or IP addresses instead of full URLs

• When accepting a URL is unavoidable, accept as little information as possible
• E.g., force https:// instead of rejecting file://, phar://, gopher://, data://, dict://, …
• To avoid weird side-effects, it is recommended to accept input in pieces

• E.g., make the client submit URL data in parts (scheme, host, path, parameters, …)
• Validate each piece as strict as possible (e.g., reject # or ? in the host part)

• By leveraging the browser's URL parser, the UX with a single URL can be preserved

• When there is truly no other option, use a URL parsing library to parse the URL
• Carefully validate the result to ensure it matches what you expect

DEFENSE-IN-DEPTH AGAINST SSRF

• Isolate services generating outgoing requests from the main application
• Network segmentation can help prevent accidental access to internal systems

• Setup proper inter-service authentication to avoid unauthorized requests
• Simple mechanisms rely on API keys or mutual TLS
• More complex mechanisms can involve OAuth 2.0 or custom security measures

https://aws.amazon.com/blogs/security/defense-in-depth-open-firewalls-reverse-proxies-ssrf-vulnerabilities-ec2-instance-metadata-service/

@PhilippeDeRyck

DO NOT UNDERESTIMATE THE PREVALENCE OF SSRF

Aim to remove as much ambiguity as possible by
accepting well-defined input and sending requests

from isolated hosts with limited permissions.

@PhilippeDeRyck

Make expected behavior as explicit as possible1

Integrate the use of OpenAPI definitions into your SDLC2

Use compartmentalization to reduce the impact of vulnerabilities3

KEY TAKEAWAYS

Thank you for watching!
Connect on social media for more

in-depth security content

@PhilippeDeRyck /in/PhilippeDeRyck

