APISEC interactive workshop:
Application-level access control
for APl-based cloud applications

Policy-driven access control
for multi-tenant cloud applications

Bert Lagaisse, Martijn Sauwens 2021/09/14

Bert.lagaisse@kuleuven.be, Martijn.sauwens@kuleuven.be

EEEEIDistriN=t

mailto:Bert.lagaisse@kuleuven.be

OWASP API Security Top 10 - 2019

API1:2019 - Broken Obhject Level Authorization

APIs tend to expose endpoints that handle object identifiers,
creating a wide attack surface Level Access Control issue. Object
level authorization checks should be considered in every function
that accesses a data source using an input from the user.

API12:2019 - Broken User Authentication

Authentication mechanisms are often implemented incorrectly,
allowing attackers to compromise authentication tokens or to
exploit implementation flaws to assume other user's identities
temporarily or permanently. Compromising system's ability to
identify the client/user, compromises API security overall.

API13:2019 - Excessive Data Exposure

Looking forward to generic implementations, developers tend to
expose all object properties without considering their individual
sensitivity, relying on clients to perform the data filtering before
displaying it to the user.

API14:2019 - Lack of Resources & Rate Limiting

Quite often, APIs do not impose any restrictions on the size or
number of resources that can be requested by the client/user. Not
only can this impact the API server performance, leading to
Denial of Service (DoS), but also leaves the door open to
authentication flaws such as brute force.

API15:2019 - Broken Function Level
Authorization

Complex access control policies with different hierarchies,
groups, and roles, and an unclear separation between
administrative and regular functions, tend to lead to authorization
flaws. By exploiting these issues, attackers gain access to other
users’ resources and/or administrative functions.

Broken
Application-level
access control
(Authentication,
Authorization)

Root of

Many problems
In API Security

I DistriN=t

Overall 3-phase approach
Application-level access control for API-based cloud applications

. . . Example case studies
Ap p I I Cat| on 'd riven Example architectures and functional decompositions
req u | reme nts an aIyS |S Example security requirements and their variations

Feedback and refinement based on your case studies

Security architecture: tactics, solutions and trade-offs

POSS'bIe arCh|teCtu I‘a| Their support in OAUTH and IdM systems.
solutions and their trade-offs ~ 9AVTH tokenacquisition flows

Support in actual technologies and implementations

- D

Overview of server-side access control models

s Adva’nced SErver-si d € ABAC, PBAC and multi-tenancy support
.i t I State of practice and state of the art
acCess coniro State-of the art research based on state-of-practice tech

3 B DistriN=t

Quick recap

Token acquisition from several types of apps:

> With a signed-in-user As application

DistriN=t

Flow/Grant overview
And their implementations in (some) technologies and managed services

implicit

Authz code Vv Vv Vv Vv Vv Vv
Authz code+PKCE \% \% \% \% \ \Y
Hybrid flow \% Vv \% \%

Client Credentials \Y Vv \Y \Y, \Y \Y
Token Exchange V (loosely) V(delegation) V (OBO)

ROPC \% \% \% \% \Y
Device code Vv Vv \Y,

RT rot. (single use) +/- (revoke) \% X X \% \%

So we got all the tokens and thelir
claims to the server ...

Now what ?

Server-side access control

> Decide if the operation is allowed

» assuming the token is correct
» Integrity
»|ssuer and claim verification
» given the user claims/attributes
» given the app claims/attributes

» given the request context

> Based on the access control policy

I DistriN=t

user.tenant

Access control policies jgz;igggigfggfg::;nt]
for reading documents [application-level]

Appl|cat|0n e A user can only access documents sent by or sent to
Provider the tenant to which he/she belongs

Sma || Ba N k e Only document managers can read documents

\ user.role

e Account managers can only read documents that
were sent by a tenant to which they were assigned

Leasing Company

user.role
22/09/2021 9 USer-manag=- DiStrl N=t

What's wrong with RBAC

y Static

> The promise of RBAC

> No context

> Too coarse-grained

> Role-explosion

Direct User Grants
Case#1: 5 users x 5 tables = 25 grants

Case #2100 users x 100 tables = 10,000 grants

(‘ROMIE) i.;;}}f{:.'ii-"
-_;T“:“_m[Role \\5' Qle Ro ::'-_‘f"‘-'?"""

L = \R ol e?' Ole j

%» - Role)
\Role =

Role-Based Accass Control Case #1: 5 users + 5 tables = 10 grants - ———— . |
(RBAC) Case #2: 100 users + 100 tables = 200 grants -‘\"“‘

4—8‘%

Separation of concerns in secure software engineering

» for the sake of modularity:
» the right person doing the right task at the right moment in the right artifact.
» Separate security logic and business logic in separate software artifacts
» Specified by different kind of people
» Security administrator
» Developer
» for adaptability
» build-time: custom access control logic in a dedicated build for a customer
» deploy-time: custom access control at deploy time in a dedicated deployment for a customer

» run-time (concurrent adaptations)

From modular programming artifact to declarative access control policy
11 B DistriN=t

e.g custom Amazon s3 policy

{

"Version™": "2012-10-17",
"Statement": [

{

"Effect™: "Allow", variable.
"Action": "s3:ListBucket",

allows access only to objects

with a name that includes cognito,

the name of the application,

and the federated user's 1D,
represented by the

"Sid": "ListYourObjects", ${cognito-identity.amazonaws.com:sub}

"Resource"; ["arn:aws:s3:::bucket-name"],
"Condition": {
"StringLike": {
"s3:prefix": ["cognito/application-name/${cognito-identity.amazonaws.com:sub}"]
}
}

"Sid": "ReadWriteDeleteYourObjects",
"Effect"; "Allow",
"Action™: [
"s3:GetObject",
"s3:PutObject”,
"s3:DeleteObject"
1,
"Resource": |
"arn:aws:s3:::bucket-name/cognito/application-name/${cognito-identity.amazonaws.com:sub}",
"arn:aws:s3:::bucket-name/cognito/application-name/${cognito-identity.amazonaws.com:sub}/*"

]
1

I DistriN=t

Basic technologies

1. Policy-based access control

2. Attribute-based access control
» Generalizes popular models such as ACL and RBAC

» Attributes assigned to
» subjects, actions, resources and environment

» Express rules based on key-value properties

» Example: roles:

Deny if “manager” not in subject.roles

» Example: ownership:

Permit if object.owner id == subject.id

» Example: time:

Permit if environment.now > 14:00

13 I DistriN=t

PBAC: Specifying access control rules

»y Externalize policies from application code

» Policies are evaluated by an evaluation engine

» Application sends evaluation request to the engine

» Evaluation engine may fetch additional information (e.g., roles of a subject) from an
attribute repository if required for evaluation

— Increased modularity
— Better separation of concerns
— Run-time reconfiguration

— Concurrent adaptation in Multi-tenancy

14 EEDistriN=t

A trip back into memory lane (20 years)

Examp

22/09/2021

e of a XACML policy:

<Policy ... Policyld="policy:1“ RuleCombiningAlgld=" deny-overrides">
<Description>Users can only act on objects owned by their tenant organization</Description>

<Rule Ruleld="rule:1" Effect="Deny">

<Condition>
<Apply Functionld="not">
<Apply Functionld="string-equal">
<Apply Functionld="string-one-and-only">
<ResourceAttributeDesignator Attributeld="object:creating-tenant” .. />
</Apply>
<Apply Functionld="string-one-and-only">
<SubjectAttributeDesignator Attributeld="subject:tenant" .../>
</Apply></Apply></Apply>
</Condition>

</Rule>
</Policy>

. I DistriN=t

XACML

» Attribute-based expressions
» Attributes have types

> Tree-structured policies
» PolicySets > Policies > Rules
» Targets (e.g., when resource.id == “doc123")
» Policy references for modularity
» Combination logic: permit-overrides, deny-overrides

» Obligations (e.g., log(*John Smith accessed doc123"), appendAttribute(*history”, “John Smith”, “doc123”))

16 I DistriN=t

XACML reference architecture for access control

* Policy Enforcement Point

* Policy Decision Point

* Policy Information Point

* Policy Administration point

—
Application PEP ®—> Ogg?\iggn
l T® Subjects,
4.(:}_ — Objects,
PAP @l PDP 4_®. Context pjp | Environmen t
C I Handler |

XACML

T L R I LA L LIS
P R e e e L L L B L
QRIS R a0 eEE s N

<Policy Policyld=“dynamic-separation-of-duty"
RuleCombiningAlgld=“deny-overrides">
<Description>Dynamic separation of duty</Description>
<Target>
<Resources>
<Resource>
<ResourceMatch Matchld="string-equal">
<AttributeValue DataType="string">doc123</AttributeValue>
<ResourceAttributeDesignator Attributeld="resource:id" DataType="string"/>
</ResourceMatch>
</Resource>
</Resources>
</Target>
<Rule Ruleld="deny" Effect="Deny">
<Description>Deny if viewed other doc</Description>
<Condition>
<Apply Functionld="string-is-in">
<AttributeValue DataType="string">doc456</AttributeValue>
<SubjectAttributeDesignator Attributeld="subject:history" DataType="string"/>
</Apply>
</Condition>
</Rule>
< <Rule Ruleld="default-permit" Effect="Permit"> </Rule>
<Obligations>
<Obligation Obligationld="append-attribute" FulfillOn="Permit">
<AttributeAssignment Attributeld="value" DataType="string">
<SubjectAttributeDesignator Attributeld="resource:id" DataType="string"/>
</AttributeAssignment>
<AttributeAssignment Attributeld="attribute-id" DataType="string">subject:history</AttributeAssignment>
</Obligation>
</Obligations>
</Policy>

20 years of access control research
Research tracks

e Separations of concerns and modularity of AC with AOP

M Od u | a r|ty e Access control with Aspect)(Bart Dewin)
¢ Advanced access control with CaesarJ (Tinne Verhanneman)

Expressive * XACML++ -
. . e STAPL: simple tree-based access control (ease of use and readability)
POWEr In p0| ICles e EBAC: entity-based access control (OO domain concepts in policy)

Eff|C|e nt |\/| Idd | AU ZlES e Access control middleware for contemporary software architectures
e AMUSA, ACE: combining policies in multi-tenant applications

For multi-tena ncy * Sequoia: data query rewriting with policy constraints

Market-driven evolution of the programme

LI3LISHIAINN IHIMOHLYA

More focus: Hype Cycle for Application Security, 2019

Adaptive Application
Security
» SaaS - API security o T Ane O Application Security Requirements and Threat Management
* From:Customer- Application Security Orchestration Crowdsourced Security Testing Platforms
manageable security and Comelation Fommel:Prasenina Encrygtion Dotabase Aud
» To: - — . .) -
Application Monitoring and Protection Mobile Threat Defense
 Self-adaptive Privacy by esign sefere cmmm
security : Bot Management Proessions! Senices
- Audit-driven security | £ Abplcaton Beeuuty AggSeation Coste
. . i Chaos Engineering Web Application Firewalls
Closing the loop § | | SEm
©| Serverless “‘m"““_""" S‘f““""’ CoxdOue B Application Security Testing Suite
D_ t b t d d t API Security Testing :umnmnﬁ";a M@mﬂma:\:‘s Cloud Access Security Brokers
IStripute ala Self-Protection Protected Browsers
management Full Life Cycle APl Management
Dynamic Data Masking
. 2 Enterprise App Stores
O From DIStrlbUted data Interactive Application Security Testing DevSecOps As of July 2019
system l Peak of : : - P
. . nnovator o rougn of 210pe o1 ateau of
¢ TO: more Securlty taCtICS Trigger ._AII. I :-:':,-u : Disillusionment Enlightenment Productivity
+ Data privacy tactics time
O Da.ta prOteCtlon taCthS Plateau will be reached:
O less than 2 years QO 2toS5years @ Sto10years i more than 10 years & obsolete before platea

Focus on prototype-driven intensive collaborations

with Flemish Industr

Vlaio-O&O

Mxenit

NO&SIS
emin

AUTOMATION

®inventivedesigner:

. and EU

ICON

\—

verizon

"K‘f""'UniﬁedPost

PWCEL

rail

= @sas
ProgzLimus

EU

FOKKER

AEROSTRUCTURES

ERICSSON 2

-

DRAXLMAIER

Expressive power In policies

STAPL

The Simple Tree-structure
Attribute-based Policy Language

23 EEDistriN=t

STAPL

Rule("roles") := permit iff (“physician" in subject.roles)

Rule(“ownership") := permit iff (resource.owner in subject.treating)

Rule(“time") := deny iff (env.currentDateTime > (resource.created + 5.days))

Policy(“dynamic SoD") := when (resource.id === "doc123") apply DenyOverrides to (
Rule("deny") := deny iff ("doc456" in subject.history),
defaultPermit

) performing (append(resource.id, subject.history) on Permit)

24 I DistriN=t

Ease of specifying policies

Attr. def. Obl. def. Pol. spec. Total

= XACML ; . 706 706 (100%)
g ALFA 168 3 259 430 (60.9%)
e STAPL 27 4 84 115 (16.3%)
 XACML ;] 1332 1332 (100%)
S ALFA 175 3 514 692 (52.0%)
= STAPL 31 1 196 231 (17.3%)

25 I DistriN=t

Modularization

BasicPolicy

Ownership BreakingGlass Time

Resource Hierarchical | ::iilail T General)
Consent Roles Location

Creation ResourceType | izl T f f Templates

PatientMonitoringSystem HospitalPolicy Legend: specified by:

| Access control expert
Application policy Domain expert

Application provider

Hospital security expert

Application security expert

26 I DistriN=t

Modularization

trait Shifts extends BasicPolicy {
env.time = SimpleAttribute(Time)

def denylfNotOnShift(start: Time, stop: Time) =

Rule := deny iff (!(2 start & stop))
}
object example extends Shifts with Treating with ... {
Policy := when (==="view") apply PermitOverrides to (
Policy := when ("nurse" in) apply DenyOverrides to (

denylfNotTreating,
denyIfNotOnShift(09:00, 17:00),
Rule := permit),
Rule := permit iff ()
performing (log(+" broke the glass™)))

27 I DistriN=t

Performance evaluation

»—{ XACML &—-A STAPL »—{ XACML 4&—4A STAPL

m

T 900 450 432

S 823

< 800} 1 __ 400} 375

0 72 w0

g 700 £ 350}

E 600} £ 300}

2 500} = 550!

£ g

= 400f S 200}

kS 3

i 300 = 150}

S 9

5 200f = 100

> a

S 100 1 50k ¢ 107 133 159 181 214

S 28 27 2.7 2.9 3.0 29 ol . ‘ . e

S o 10 20 30 40 50 0 10 20 30 40 50
Number rules Number rules

28 I DistriN=t

Entity Based Access Control

Problem, revisited

“Physicians can only create medical records for patients

enrolled to the same facility as them”

-

(O — Saaam
¢ L dE affiliation aF

. 2 en,
{ Physician Healt . limepy
' I o
Facility Patient
A
. Invol A nvolves .
Algy, e > —= = .
7] 7 Consultation
r =
Medical ... involves
Record

subject.affiliation_id = resource.consultation_patient_enrollment_id

SELECT Facility.id FROM MedRec
JOIN Consultation ON MedRec.consultation = Consultation.id
JOIN Patient ON Consultation.patient = Patient.id

JOIN Facility ON Patjient.enrollment = Facility.id M -
WHERE MedRec.id%:b? DistriN=t

Problem, revisited

“Physicians can view medical records if the corresponding

patient had a consultation with them in the last year”

At i
.‘- i’h ———_9 ---: \ %
SRR Y affiliation - 1
. L. r enr A
i Physician Health care ment *
I .
Facility Patient
4
Involveg -l i involves .
Creagg . @—::Z " =]
&/ Vigy, .>‘/ * ’/ Consu.ltation
Medical _ ..~ -i-ﬁvolves
Record

resource.consultation_patient_id € subject.patients_of last year

SELECT Patient.id FROM Physician
JOIN Consultation ON Physician.consultations = Consultation.id
JOIN Patient ON Consultation.patient = Patient.id v
WHERE Subject.id = ? AND CoR&ultation.date BEFORE (...) DistriN=t

Problem, revisited

» ABAC does not support expression of relationships

» Attributes are assigned to subject, resource, action and

environment
» Does not seamlessly apply to application domain!

» Also, multiple attributes over the relationship may be relevant!

32 DistriN=t

Entity-Based Access Control (EBAC)

> First-class citizen: Entity
» cfr. Entity-Relationship Model
» Entities have both relationships and attributes
» Like ABAC, attributes compared in logical expressions

» Addressed starting from subject, resource, action or environment

» Unlike ABAC, attributes of auxiliary entities can be addressed
through relationships

33 DistriN=t

Entity model

: Subject | | Resource |
L e D D D - - - - - o b e e e e e e - :
supervisor p A A
! consultations p « consultation |
Physician Consultation Medical Record
_ <« physician records p-* .
trainee: Boolean date: Date categories: Category*
specialization: Category*
startDate: Date * ‘ consents *
patienty Aconsultations
affiliation| ¥

* « enrollments Patient

Hospital

resource.consultation.physician.trainee
3 DistriN=t

Comparison with ABAC

Attribute-Based Access Control

subject.affiliation_id €
res‘wons_patient_enroll_id

SELECT Facility.id FROM MedRec
JOIN Consultation ON MedRec.consultation = Consultation.id
JOIN Patient ON Consultation.patient = Patient.id
JOIN Facility ON Patient.enrollment = Facility.id
WHERE MedRec.id =?

resource.consultation_patient_id e
subject.patients_of last 2 years
—

Entity-Based Access Control

subject.affiliation.id €
resource.consultation.patient.enrollment.id

3 ¢ € subject.consultations:
(c.patient.id = resource.consultation.patient.id &

SELECT Patient.id FROM Physician
JOIN Consultation ON Physician.consultations = Consultation.id
JOIN Patient ON Consultation.patient = Patient.id
WHERE Subject.id = ? AND Consultation.date BEFORE (NOW - 2y)

cldate <= (environment.now — 2 years))

resource.consultation_physician €
subject.all_supervisors

—

recursive method!

3, S € subject.supervisor:
(resource.consultation.physician.id = s.id)

DistriN=t

Auctoritas: Extension of STAPL that supports EBAC

> Example:

Policy(“example”) := apply DenyOverrides to (

Rule(“Only enrolled”) := permit iff (action.id === “create” &
subject.affiliation in resource.consultation.patient.enrollments
)>

Rule(“Recent consultation”) := permit iff (action.id === “view” &
resource.consultation.patient.consultations.exists(

consultation => consultation.physician.id === subject.id &
environment.now >= (consultation.date + 2.years)

)
)>
Rule(“Indirect supervisor”) := permit iff (action.id === “view” &
subject.supervisor.existsOnPath(
supervisor => resource.consultation.physician.id === supervisor.id

)
)

DistriNzt

AMUSA

user.tenant

Access control policies jgz;igggigfggfg::;nt]
for reading documents [application-level]

Appl|cat|0n e A user can only access documents sent by or sent to
Provider the tenant to which he/she belongs

Sma || Ba N k e Only document managers can read documents

\ user.role

e Account managers can only read documents that
were sent by a tenant to which they were assigned

Leasing Company

user.role
user.manages M
22/09/2021 38 Lﬁ DistriN=t

Authorization middleware for multi-tenant applications

AMUSA middleware:

1. Multi-tenancy out-of-the-box
2. Provider-specific policies

3. Tenant-specific attributes
4. Tenant-specific policies

Tenants

eDocs

Amusa

Large Bank Press Agency
subj.assigned customers subj.region

subj.email, subj.tenant credit, res.sender

subj.id, res.id, subj.tenant, res.tenant,
res.owner, subj.roles

Large Bank Press Agency
Deny if not res.owner
in subj.assigned_customers Deny if
lenants e e o "
Override isolation if subj.region != "Europe
subj.tenant == "PartnerA"
Deny if subj.tenant credit < action.cost
eDocs e o
Override isolation if res.owner in subj.reseller tenants
Amusa Default tenant isolation policy

Authorization model: 4 levels of policies

Tenant-specific policies (by tenant)
Tenant 1: by region Tenant 2: ownership Tenant 3: roles
Tenant-specific policies (by provider)
Tenant 1: post-paid Tenant 2: pre-paid

Provider-specific policies (application domain)
Only read document if your organization is the destination

A4

Built-in policies in the framework
Tenant-isolation

I DistriN=t

Goal

» Combine policies securely

»y Enforce at run-time

Multi-tenant SaaS Application

Custom-built
application-specific
access control layer

41

Multi-tenant SaaS Application

policies and attributes |,

Amusa

policies and attributes |

Built-in
policies and attributes

Policy-based access control
Attribute-based policies
Tree-structured policies

1
Tenant-specific _:_O

Application-specific ’I'O

Tenant
admin

Provider
admin

I DistriN=t

Secure policy combination

Provider policies about tenants any;
"‘,‘ DenyOverrides

[I I

any; Deny if subj.tenant == “Large Bank”;
PermitOverrides || subj.tenant_credit < action.cost FirstApplicable

subj.tenant == “Press Agency”;
FirstApplicable

I I I I Deny if not res.owner in

[built-in policy for Permit if res.owner ||res.owner == “Large Bank”; subj.assignedCustomers

Deny if
subj.region != “Europe”

strict tenant isolation] || in subj.reseller_tenants FirstApplicable »

4 I 5

Permit if
subj.tenant == “Partner A”

o
D
0
D
D
g
0
0
0
D
-
0
D

Tenant exceptions
to tenant isolation

Provider exceptions
to tenant isolation

A

Tenant policies about their own users

Intermediate node: defined by Amusa

Legend: Leaf:

| defined by the tenants | :

target;

Effect if condition

combination algorithm

defined by the providerl

I DistriN=t

Performance

[Processing [J Attribute fetch

’GE? 6

~ 5 4.5ms

g7 (8%)]
eyl 3('77;2)5 3.5ms 3.4ms]
c (6%) (6%)

o

= 3| 2.2ms 2.2ms 2.1ms _|
R e s /Al bt Rl v iehl b F3:6ms 1o - 2-lms. -
3 (4%) | 2.7ms | _(4%) |, o 5 sms | __(4%)

rU 4
Cl>J 0.6ms | 1.oms 1.4ms 1.3ms
> 1 (1%) |
O

=) 0.6ms || 0.7ms 1.9ms O.Qms 0.9|ms 0.9|ms O.Qms 0.8lms
o R1 R2 R3 R4 R5 R6 R7 R8

Request

43 I DistriN=t

Project ACE:
Multi-tenant PBAC In asp.net web stack

Out-of-the-box authentication, authorization Deep integration with .net stack
and audit for , Azure AD
> SaaS: Out-of-the-box Multi-tenancy > Asp.net MVC
> Flexible access control scripts > Asp.net Web API
» Per-tenant, by provider & by tenant [Authorize]
. . public class BillViewController : Controller
» Constrain users, tenants, services {
; : : : PBACMVC]
» Dynami mization, extension [
ynamic customization, extensio public async Task<ActionResult> Index(){
}
if(request.TenantId != Tenants.SmallBuz) [Authorize]
throw "This policy is for SmallBuz only"; public class BillController : ApiController
{
if (request.Controller== “BillGenerator" [PBAC]
&& request.Action == "Put") { public string Get(int id){
if ('isNight()) -
if (request.AppId != Apps.WebPortal) }
} throw "You can only upload at night"; mstrlNzt

Application-level Access Control:

LI3LISHIAINN IHIMOHLYA

LETER

Configuration vs Policies vs Implementation

‘ myComponent :
Component
CONFIG . v
e TavaScrin*
Configuration Declarative Dvnamic Authorization Hard-coded
*Role-based Policy y _ components -Application-level
*User-based “XACML Externalized «Custom implementation
*Group--based authorization *Inside the business
«Annotations ‘ SUARL Access module logic

+JSON-based

*Constraints on
ABAC

*OPA

*Config file

Scri pts +Policy implemented
in component code

*Bound via config file
or annotations

Sequoia

Sequola: secure queries on internet APIs

Leasing, inc

Tenant
Policies

Telecom, inc

eDocs

Provider
Policies

Business
Logic

N

Data
Tier

Shared Services

Shared Storage

Tenant
Employee

Leasing, inc

“Only see bills for
customers you are
managing”

“Only see bills for the

tenant you belong to

See open bills of
customer X

IstriN=t

Sequola: security framework solution

» Beyond evaluating policies on single resources

» Secure data querying and reporting

: _ : . _ (Database \ =
» Enforcing sophisticated security policies in queries Abstraction Layer
Access Control
Access Control Policy
Middleware

0» . A’] — -

(6) (6) Policy :

< < Transformer @ 1

. I

MariaDB

Query o I?atabase
Translator @ ‘\!”\ |]
!. | ,l
|

\= /

m» elasticsearch Databace

48 I DistriN=t

Scalability w.r.t. naive approach

1500
1400 ’
1300 ‘
1200 »
1100 !
1000 4
900 ’

800 p

700 ‘

600 ;
500 ’
400 /
300 ‘
200 »

Total processing time (ms)

P,

100 *
0 .

0 10000 20000 30000

Database size (# elements)

40000

Approach - @ - A posteriori filter —e— Rewriting

42

50000

— DistriN=t

Processing overhead

Total processing time (ms)

30

60

40

1000 4000 8000 10000 15000 20000 25000 50000

Database size (# elements)

Processing time EEReduction [l Transformation Query processing

A4

DistriN=t

