
Policy-driven access control

for multi-tenant cloud applications
Bert Lagaisse, Martijn Sauwens 2021/09/14

Bert.lagaisse@kuleuven.be, Martijn.sauwens@kuleuven.be

APISEC interactive workshop:

Application-level access control 

for API-based cloud applications

mailto:Bert.lagaisse@kuleuven.be


Broken

Application-level 

access control

(Authentication,

Authorization)

=

Root of

Many problems

In API Security



Overall 3-phase approach
Application-level access control for API-based cloud applications

3

Application-driven 
requirements analysis 

Example case studies

Example architectures and functional decompositions

Example security requirements and their variations

Feedback and refinement based on your case studies

Possible architectural 
solutions and their trade-offs

Security architecture: tactics, solutions and trade-offs

Their support in OAUTH and IdM systems.

OAUTH token acquisition flows

Support in actual technologies and implementations

Advanced server-side 

access control

Overview of server-side access control models

ABAC, PBAC and multi-tenancy support

State of practice and state of the art

State-of the art research based on state-of-practice tech



Quick recap



consumer tier

consumer tier Token acquisition from several types of apps:

› With a signed-in-user › As application

Api1

tenant-side daemon

server-side daemon

server-side web app

SPA

Browserless app

Mobile App

Api2

Desktop app

IOT device

tenant-side daemon
Api1

daemon web app



Flow/Grant overview

Technology KeyCloak IdentityServer AzureAD Cognito Auth0 Okta

implicit V V V V V V

Authz code V V V V V V

Authz code+PKCE V V V V V V

Hybrid flow V V V V

Client Credentials V V V V V V

Token Exchange V (loosely) V(delegation) V (OBO)

ROPC V V V V V

Device code V V V

RT rot. (single use) +/- (revoke) V X X V V

And their implementations in (some) technologies and managed services

6



So we got all the tokens and their 

claims to the server …

Now what ?



Server-side access control 

› Decide if the operation is allowed

assuming the token is correct

Integrity

Issuer  and claim verification

given the user claims/attributes

given the app claims/attributes

given the request context

› Based on the access control policy



Access control policies
for reading documents

• A user can only access documents sent by or sent to
the tenant to which he/she belongs

Application 
Provider

• Only document managers can read documentsSmall Bank

• Account managers can only read documents that 
were sent by a tenant to which they were assignedLeasing Company

9
22/09/2021

doc.sending_tenant
doc.receiving_tenant
user.tenant
[application-level]

user.role

user.role
user.manages



What’s wrong with RBAC

› The promise of RBAC
› Static

› No context

› Too coarse-grained

› Role-explosion



Separation of concerns in secure software engineering

› for the sake of modularity: 

the right person doing the right task at the right moment in the right artifact.

Separate security logic and business logic in separate software artifacts

Specified by different kind of people

Security administrator

Developer 

› for adaptability

build-time: custom access control logic in a dedicated build for a customer

deploy-time: custom access control at deploy time in a dedicated deployment for a customer

run-time (concurrent adaptations)

From modular programming artifact to declarative access control policy

11



e.g custom Amazon s3 policy

12

{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "ListYourObjects",

"Effect": "Allow",

"Action": "s3:ListBucket",

"Resource": ["arn:aws:s3:::bucket-name"],

"Condition": {

"StringLike": {

"s3:prefix": ["cognito/application-name/${cognito-identity.amazonaws.com:sub}"]

}

}

},

{

"Sid": "ReadWriteDeleteYourObjects",

"Effect": "Allow",

"Action": [

"s3:GetObject",

"s3:PutObject",

"s3:DeleteObject"

],

"Resource": [

"arn:aws:s3:::bucket-name/cognito/application-name/${cognito-identity.amazonaws.com:sub}",

"arn:aws:s3:::bucket-name/cognito/application-name/${cognito-identity.amazonaws.com:sub}/*"

]

}]}

allows access only to objects 

with a name that includes cognito, 

the name of the application, 

and the federated user's ID, 

represented by the 

${cognito-identity.amazonaws.com:sub}

variable.



Basic technologies

1. Policy-based access control

2. Attribute-based access control

Generalizes popular models such as ACL and RBAC

Attributes assigned to 

subjects, actions, resources and environment

Express rules based on key-value properties 

Example: roles:

Deny if “manager” not in subject.roles

Example: ownership:

Permit if object.owner_id == subject.id

Example: time:

Permit if environment.now > 14:00

13



PBAC: Specifying access control rules

14

› Externalize policies from application code

Policies are evaluated by an evaluation engine

Application sends evaluation request to the engine

Evaluation engine may fetch additional information (e.g., roles of a subject) from an 

attribute repository if required for evaluation

 Increased modularity

 Better separation of concerns

 Run-time reconfiguration

 Concurrent adaptation in Multi-tenancy



A trip back into memory lane (20 years)

Example of a XACML policy:

15
22/09/2021

<Policy … PolicyId="policy:1“ RuleCombiningAlgId=" deny-overrides">

<Description>Users can only act on objects owned by their tenant organization</Description>

…

<Rule RuleId="rule:1" Effect="Deny">

<Condition>

<Apply FunctionId="not">

<Apply FunctionId="string-equal">

<Apply FunctionId="string-one-and-only">

<ResourceAttributeDesignator AttributeId="object:creating-tenant" .. />

</Apply>

<Apply FunctionId="string-one-and-only">

<SubjectAttributeDesignator AttributeId="subject:tenant" …/>

</Apply></Apply></Apply>

</Condition>

</Rule>

</Policy>



XACML

16

› Attribute-based expressions

Attributes have types

› Tree-structured policies

PolicySets > Policies > Rules

Targets (e.g., when resource.id == “doc123”)

Policy references for modularity

Combination logic: permit-overrides, deny-overrides

Obligations (e.g., log(“John Smith accessed doc123”), appendAttribute(“history”, “John Smith”, “doc123”))



XACML reference architecture for access control

• Policy Enforcement Point

• Policy Decision Point

• Policy Information Point

• Policy Administration point



XACML

18

<Rule RuleId=“roles" Effect="Deny">
<Description>This is just the single rule for the above policy.</Description>
<Condition>
<Apply FunctionId="string-is-in">

<AttributeValue DataType="string">physician</AttributeValue>
<SubjectAttributeDesignator AttributeId="subject:roles" DataType="string"/>

</Apply>
</Condition>

</Rule>

<Rule RuleId=“treating" Effect="Permit">
<Description>Treating</Description>
<Condition>
<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-is-in">

<Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:string-one-and-only">
<ResourceAttributeDesignator AttributeId="resource:owner" DataType="string"/>

</Apply>
<SubjectAttributeDesignator AttributeId="subject:treating" DataType="string"/>

</Apply>
</Condition>

</Rule>

<Rule RuleId=“time" Effect="Deny">
<Description>Time</Description>
<Condition>
<Apply FunctionId="not">

<Apply FunctionId="dateTime-less-than-or-equal">
<Apply FunctionId="dateTime-one-and-only">
<EnvironmentAttributeDesignator AttributeId="environment:currentDateTime"

DataType="dateTime"/>
</Apply>
<Apply FunctionId="dateTime-add-dayTimeDuration">
<Apply FunctionId="dateTime-one-and-only">
<ResourceAttributeDesignator AttributeId="resource:created"

DataType="dateTime"/>
</Apply>
<AttributeValue DataType="dayTimeDuration">P5D</AttributeValue>

</Apply>
</Apply>

</Apply>
</Condition>

</Rule>

<Policy PolicyId=“dynamic-separation-of-duty"

RuleCombiningAlgId=“deny-overrides">

<Description>Dynamic separation of duty</Description>

<Target>

<Resources>

<Resource>

<ResourceMatch MatchId="string-equal">

<AttributeValue DataType="string">doc123</AttributeValue>

<ResourceAttributeDesignator AttributeId="resource:id" DataType="string"/>

</ResourceMatch>

</Resource>

</Resources>

</Target>

<Rule RuleId="deny" Effect=“Deny">

<Description>Deny if viewed other doc</Description>

<Condition>

<Apply FunctionId="string-is-in">

<AttributeValue DataType="string">doc456</AttributeValue>

<SubjectAttributeDesignator AttributeId="subject:history" DataType="string"/>

</Apply>

</Condition>

</Rule>

<Rule RuleId=“default-permit" Effect=“Permit"> </Rule>

<Obligations>

<Obligation ObligationId="append-attribute" FulfillOn="Permit">

<AttributeAssignment AttributeId="value" DataType="string">

<SubjectAttributeDesignator AttributeId="resource:id" DataType="string"/>

</AttributeAssignment>

<AttributeAssignment AttributeId="attribute-id" DataType="string">subject:history</AttributeAssignment>

</Obligation>

</Obligations>

</Policy>



20 years of access control research
Research tracks

• Separations of concerns and modularity of AC with AOP

• Access control with AspectJ(Bart Dewin)

• Advanced access control with CaesarJ (Tinne Verhanneman)
Modularity

• XACML++

• STAPL: simple tree-based access control (ease of use and readability)

• EBAC: entity-based access control (OO domain concepts in policy)

Expressive 
power in policies

• Access control middleware for contemporary software architectures

• AMUSA, ACE: combining policies in multi-tenant applications

• Sequoia: data query rewriting with policy constraints

Efficient Middleware

For multi-tenancy



More focus:
Adaptive Application 

Security

• SaaS → API security

• From:Customer-
manageable security

• To:

• Self-adaptive 
security

• Audit-driven security

• Closing the loop

Market-driven evolution of the programme

Distributed data 
management

• From: Distributed data 
system

• To: more security tactics

• Data privacy tactics

• Data protection tactics



EUICONVlaio-O&O

Focus on prototype-driven intensive collaborations 

with Flemish Industry, and EU



Expressive power in policies



STAPL
The Simple Tree-structure 

Attribute-based Policy Language

23



STAPL

24

Rule("roles") := permit iff (“physician" in subject.roles)

Rule(“ownership") := permit iff (resource.owner in subject.treating)

Rule(“time") := deny iff (env.currentDateTime > (resource.created + 5.days))

Policy(“dynamic SoD") := when (resource.id === "doc123") apply DenyOverrides to (
Rule("deny") := deny iff ("doc456" in subject.history),
defaultPermit

) performing (append(resource.id, subject.history) on Permit)



Ease of specifying policies

25



Modularization

26



Modularization

27

trait Shifts extends BasicPolicy {

env.time = SimpleAttribute(Time)

def denyIfNotOnShift(start: Time, stop: Time) =

Rule := deny iff (!(env.time ≥ start & env.time stop))

}

object example extends Shifts with Treating with … {

Policy := when (action.id === "view") apply PermitOverrides to (

Policy := when ("nurse" in subject.roles) apply DenyOverrides to (

denyIfNotTreating,   

denyIfNotOnShift(09:00, 17:00), 

Rule := permit),

Rule := permit iff (subject.triggered_breaking_glass) 

performing (log(subject.id + " broke the glass")))

}



Performance evaluation

28



Entity Based Access Control

29



Problem, revisited

30

“Physicians can only create medical records for patients 

enrolled to the same facility as them”

subject.affiliation_id = resource.consultation_patient_enrollment_id
SELECT Facility.id FROM MedRec

JOIN Consultation ON MedRec.consultation = Consultation.id 

JOIN Patient ON Consultation.patient = Patient.id 

JOIN Facility ON Patient.enrollment = Facility.id 

WHERE MedRec.id = ?



Problem, revisited

31

“Physicians can view medical records if the corresponding 

patient had a consultation with them in the last year”

resource.consultation_patient_id  subject.patients_of_last_year
SELECT Patient.id FROM Physician 

JOIN Consultation ON Physician.consultations = Consultation.id 

JOIN Patient ON Consultation.patient = Patient.id 

WHERE Subject.id = ? AND Consultation.date BEFORE (...)



Problem, revisited

32

› ABAC does not support expression of relationships

Attributes are assigned to subject, resource, action and 

environment

Does not seamlessly apply to application domain!

Also, multiple attributes over the relationship may be relevant!



Entity-Based Access Control (EBAC)

33

› First-class citizen: Entity

cfr. Entity-Relationship Model

Entities have both relationships and attributes

› Like ABAC, attributes compared in logical expressions

Addressed starting from subject, resource, action or environment

Unlike ABAC, attributes of auxiliary entities can be addressed 

through relationships



Entity model

34

resource.consultation.physician.trainee



Comparison with ABAC

subject.affiliation_id ∈

resource.cons_patient_enroll_id

resource.consultation_patient_id 

subject.patients_of_last_2_years

resource.consultation_physician ∈

subject.all_supervisors

subject.affiliation.id ∈

resource.consultation.patient.enrollment.id

 c ∈ subject.consultations: 

(c.patient.id = resource.consultation.patient.id &

c.date <= (environment.now – 2 years) )

ρ s ∈ subject.supervisor:                  

(resource.consultation.physician.id = s.id)

35

Attribute-Based Access Control Entity-Based Access Control

SELECT Facility.id FROM MedRec

JOIN Consultation ON MedRec.consultation = Consultation.id 

JOIN Patient ON Consultation.patient = Patient.id 

JOIN Facility ON Patient.enrollment = Facility.id 

WHERE MedRec.id = ?

SELECT Patient.id FROM Physician 

JOIN Consultation ON Physician.consultations = Consultation.id 

JOIN Patient ON Consultation.patient = Patient.id 

WHERE Subject.id = ? AND Consultation.date BEFORE (NOW – 2y)

recursive method!



Policy(“example”) := apply DenyOverrides to (
Rule(“Only enrolled”) := permit iff (action.id === “create” & 

subject.affiliation in resource.consultation.patient.enrollments
),

Rule(“Recent consultation”) := permit iff (action.id === “view” &
resource.consultation.patient.consultations.exists(

consultation => consultation.physician.id === subject.id &
environment.now >= (consultation.date + 2.years)

)
),

Rule(“Indirect supervisor”) := permit iff (action.id === “view” &
subject.supervisor.existsOnPath(

supervisor => resource.consultation.physician.id === supervisor.id
)

)
)

Auctoritas: Extension of STAPL that supports EBAC

36

› Example:



AMUSA



Access control policies
for reading documents

• A user can only access documents sent by or sent to
the tenant to which he/she belongs

Application 
Provider

• Only document managers can read documentsSmall Bank

• Account managers can only read documents that 
were sent by a tenant to which they were assignedLeasing Company

38
22/09/2021

doc.sending_tenant
doc.receiving_tenant
user.tenant
[application-level]

user.role

user.role
user.manages



Authorization middleware for multi-tenant applications

39
iMinds-DistriNet

AMUSA middleware:

1. Multi-tenancy out-of-the-box

2. Provider-specific policies

3. Tenant-specific attributes

4. Tenant-specific policies



Authorization model: 4 levels of policies

Built-in policies in the framework

Tenant-isolation

Provider-specific policies (application domain)

Only read document if your organization is the destination

Tenant-specific policies (by provider)

Tenant 1: post-paid Tenant 2: pre-paid

Tenant-specific policies (by tenant)

Tenant 1: by region Tenant 2: ownership Tenant  3: roles



Goal

› Combine policies securely

› Enforce at run-time

41



Secure policy combination

42

any;
DenyOverrides

any;
PermitOverrides

Deny if 
subj.tenant_credit < action.cost

subj.tenant == “Large Bank”;
FirstApplicable

subj.tenant == “Press Agency”;
FirstApplicable

…

[built-in policy for
strict tenant isolation]

Permit if res.owner
in subj.reseller_tenants

res.owner == “Large Bank”;
FirstApplicable

…

Deny if not res.owner in
subj.assignedCustomers

Deny if
subj.region != “Europe”

Permit if
subj.tenant == “Partner A”

Effect if condition
target;

combination algorithm

defined by Amusa

defined by the provider

defined by the tenantsLegend: Leaf: Intermediate node: Colors:

Provider policies about tenants

Provider exceptions
to tenant isolation

Tenant exceptions
to tenant isolation

Tenant policies about their own users



Performance

43



Project ACE:

Multi-tenant PBAC in asp.net web stack

Out-of-the-box authentication,  authorization 

and audit for

› SaaS: Out-of-the-box Multi-tenancy

› Flexible access control scripts

Per-tenant, by provider &  by tenant

Constrain users, tenants, services

Dynamic customization, extension

Deep integration with .net stack

› Azure AD

› Asp.net MVC

› Asp.net Web API

[Authorize]
public class BillViewController : Controller
{
[PBACMVC]
public async Task<ActionResult> Index(){
…
}

[Authorize]
public class BillController : ApiController
{
[PBAC]
public string Get(int id){

…
}

if(request.TenantId != Tenants.SmallBuz)
throw "This policy is for SmallBuz only";

if (request.Controller== “BillGenerator"
&& request.Action == "Put") {
if (!isNight())
if (request.AppId != Apps.WebPortal)
throw "You can only upload at night";

}



Application-level Access Control:

Configuration vs Policies vs Implementation

Configuration

•Role-based

•User-based

•Group--based

•Annotations

•Config file

Declarative

Policy

•XACML

•STAPL

•JSON-based

•Constraints on 
ABAC

•OPA

Dynamic

Externalized

Access 
Scripts

Authorization 
components

•Custom 
authorization 
module

•Policy implemented 
in component code

•Bound via config file 
or annotations

Hard-coded

•Application-level 
implementation

•Inside the business 
logic



Sequoia



Shared StorageShared Services

Sequoia: secure queries on internet APIs

47

Bills

storage

Business

Logic
Data

Tier

Query

Bills

“Only see bills for 

customers you are 

managing”

“Only see bills for the 

tenant you belong to

See open bills of 

customer X

Bills

Tenant

Policies

Provider

Policies

Tenant

Employee

eDocs

Leasing, inc

Telecom, inc

Leasing, inc



Sequoia: security framework solution

Beyond evaluating policies on single resources

Secure data querying and reporting

Enforcing sophisticated security policies in queries

48









Database 

Abstraction Layer

Access Control

Middleware

Policy

Transformer

Query

Translator







Access Control

Policy

Resource

Database

API User

Database

 



Scalability w.r.t. naïve approach

49



Processing overhead

50


