OAuch

Automatically Analyzing the Security of an OAuth 2.0 Implementation

Pieter Philippaerts

EEEEIDistriN=t

Exploring OAuth 2.0

A gsactical guide to securing your APls
o
Teter Philippaerts

R

EEEIDistriN=t

https://www.apisec.be/media mmist”N:t

“Once you have implemented
OAuth2, how do you know you have
Implemented it securely?”

| SSL Server Test vanw.googlecor X ‘+

< O

B hitps://www.ssllabs.com/ssltest/analyze html?d=www.google.com&s=172.217.6.68&hideResul... 75

- O X

+ w A B

@ Qualys. ssi Labs

You are here: Home > Projects > SSI Server Test> www google.com > 172217 6 68

SSL Report: www.google.com (172.217.6.68)

Assessed on: Mon, 20 Jul 2020 06:35:49 UTC | HIDDEN | Clear cache

Summary

Overall Rating

Certificate

Protocol Support

Key Exchange

Cipher Strengtn

Visit our page for more

Home Projects Qualys Free Trial Contact

Scan Another »

20 40 60 80 100

guides, and books. Known issues are documented here.

This server supports TLS 1.0 and TLS 1.1. Grade capped to B. MORE INFO »

| © Scan resuits for wwwifacebook< X | -

&« O & https://securityheaders.com/?q=www.facebook.com&follo... 7%

Security Headers

srorcres S REpOrt URI

= a & B

Home About Donate

Scan your site now

fvww.facebook.com Scan

M Hide results ¥ Follow redirects

Security Report Summary

Site:
IP Address:
Report Time:

Headers:

Warning:

Supported By

https://www .facebook.com/
2a03:2880:f131:83:face:b00c:0:25de

20]Jul 2020 10:51:59 UTC

+ Strict-Transport-Security | « Content-Security-Policy
+ X-Content-Type-Options | + X-Frame-Options | % Referrer-Policy
% Feature-Policy

Grade capped at A, please see warnings below.

= DistriN=t

im] © Site results - QAuch * + - o ®

E} DnetBox - Home E) DnetShare ™ DistriNet Code mﬂ KU Leuven Webmail E} Cybersecurity Progr... >

&~ O 7 https://oauch.io/Dazhboa

Dashboard Tests overview FAQ About OAuch ® Sign out

Site results

There are 1 pending test(s) that have not been (fully) executed yet.

Hence, the results presented here are incomplete. To complete the
results, please resume the test run.

The site was successfully tested on February 1, 2021 at 16:44. The
details of this test run can be found below. To test the site again, click
here to start a new test run.

Results Failed tests All tests Threats Full log Reporting History

Threats
« Mitigated threats: 16
« Partially mitigated threats: 7
« Unmitigated threats: 6

Deprecated features
+ Deprecated features detected: 2

Countermeasures
« Mandatory test cases failed: 7 (15.9 %)

a Daornmmandard tact racac failad-@ (on 0ol T

I DistriN=t

The OAuch logo is based on the OAuth logo created by Chris Messina. The logo is released under the Creative Commons Attribution ShareAlike 3.0 license.

The OAuch Tool

Internet Engineering Task Force (IETF) . Hardt, Ed.
Request for Comments: 6749 Microsoft
Chscletes: 5843 October 2012
Category: Standards Track

IsSsN: 2070-1721

The ORuth 2.0 Authorization Framework AZuthorizaticon servers MREY issus re:
clients and native application cli
Bbstract

Refresh tokens MUST be kept confid
The Ckuth 2.0 authorizaticon framework enables a third-party shared only among the authorizatio
application to cobtain limited access to an HTTP service, either on refresh tokens were issued. The a
behalf of a resource owner by crchestrating an approval interacticn the binding between a refresh toke
between the resource owner and the HTTP service, or by allowing the issued. Refresh tckens MUST cnly |}
third-party application to cbtain access on its cown behalf. This described in Secticn 1.6 with serv

specification replaces and obscletes the DAuth 1.0 protocol described [RFCZ2B18] .

in RFC S5B845.
The authorization server MUST veri

Status of This Memo token and cliesnt identity whensver
authenticated. When client authen
This is an Internet Standards Track document. suthorizaticon server SHOULD deploy

token abuse.
This document is a product of the Internet Engineering Task Force
[IETF). It represents the consensus of the IETF community. It has
received public review and has been approved for publication by the
Internet Engineering Steering Group (IESG). Further information on
Internst Standards is available in Section 2 of RFC 5741.

Information about the current status of this document, any errata,
and how to provide feedback on it may be obtained at

http://www.rfoc-editor.org/info/rfce749.

Copyright Notice

Copyright (c)} 2012 IETF Trust and the perscns identified as the D\' N
document authors. All rights reserved. Istrl =t

BUILDING YOUR APPLICATION

TOKEN BINDING

TOKEN EXCHANGE

3 |

I DistriN=t

Copyright © Aaron Parecki

Building a test case

The client MUST NOT use the authorization code

more than once.

» OAuch tries to use the same authorization code two times and keeps

track of the server’s response

I DistriN=t

Test case coverage

> OAuch implements 112 unique test cases from 10
documents

» Many documents contain the same requirements

» If a requirement has varying requirement levels, OAuch picks the

strictest one

> Not all security requirements can be converted to test cases

I DistriN=t

Testing Process

> OAuch is set up like any other client

» ... but acts like a malicious client!

» Access token validation requires an API endpoint

» HTTP 2xx — access token is valid

» HTTP 4xx/5xx — access token is invalid

I DistriN=t

Testing Process

> OAuch detects which features are enabled on the server

» The relevant test cases are selected and run

» OAuch keeps a detailed log, that can be inspected by the user

y Result: a full overview of which countermeasures are
enabled on the server

» But what does that mean?

I DistriN=t

OAuth Threat Model

Name — 4.4.2.2. Threat: Access Token Leak in Browser History

Description — An attacker could obtain the token from the browser's history. Note
that this means the attacker needs access to the particular device.

List of counter- Countermeasures:

measures .} o Use short expiry time for tokens (see Section 5.1.5.3). Reduced

scope of the token may reduce the impact of that attack (see
Section 5.1.5.1).

o Make responses non-cacheable.

= DistriN=t

OAuth Threat Model

> OAuch integrates this threat model (+BCP) into the analysis

» 36 server-side threats are evaluated

» A threat can be full mitigated, partially mitigate or not mitigated

> OAuch gives clear advice to a site owner

» Which threats is your site vulnerable to?

» Which countermeasures must be implemented to mitigate them?

I DistriN=t

DEMO: OAuch

Analyzing the OAuth 2.0 Ecosystem

What we did

> We tested 100 OAuth implementations
» 80 API providers, 20 OIDC providers
» 75 sites from Top 10000

» All publicly available (so they should be secure)

> We drew statistics over the sites and over the individual
countermeasures/threats

I DistriN=t

Results — Failure Rates

D

Overall: 33% FR

Must: 20% FR Should: 56% FR Overall: 81% FR
= DistriN=t

&

Results — Partially Mitigated Threats

30

25

1

2

3

4 5 6 7 8 9
Partially mitigated threats

10

11

12 13

= DistriN=t

Results — Unmitigated Threats

30

25

[]

1+

1

2

3

4

5 6 7 8
Unmitigated threats

9

10

11

12 13

I DistriN=t

Confirming the Results

» To validate the results, we used OAuch as an offensive tool

1. Choose an attack vector
2. Use OAuch to list all vulnerable sites

3. Try to write a proof-of-concept exploit

I DistriN=t

Confirming the Results — Clickjacking Attack

x \LA

¢>C

€>C

= DistriN=t

Confirming the Results — Clickjacking Attack

» OAuch identified 22 sites that could be vulnerable to this
threat

» After manual verification, 19 could be exploited (86% success rate)
» 2 sites used JavaScript to redirect to a secure page

» 1 site used frame-busting JavaScript

I DistriN=t

Confirming the Results — Authorization Code Injection

4

Atrtrocker

‘ Threat: Authorization Code Injection

l. s-ri:F avthorization flow

? Mﬁm code
3, avthorization code isrex‘-‘.h'm—kep!
4, stanrt azq‘:ziﬁon flow ?

e 5. navigate +o Ppraed callback

6. exchange. code.

24 = DistriN=t

Confirming the Results — Authorization Code Injection

> Focus on the OIDC providers

» Found clients for 12 OIDC providers

» These clients were tested for this vulnerability
» Most clients were vulnerable

» For each provider, at least one vulnerable client was found (100% success

rate)

I DistriN=t

“Is it really that bad?”

Is it really that bad?

> Yes and no.

» Yes, the servers do not (fully) mitigate certain threats

» No, the threat model assumes a powerful attacker

» Often complex exploitability

» No, OAuch assumes no client mitigations

I DistriN=t

“‘Why are OAuth implementations
lacking SO many counter-
measures?”

Why are implementations non-compliant?

> The provider knows about it, but...

» ... wants to maintain backward compatibility
» ... some countermeasures cannot be efficiently implemented
» ... they have other development priorities

» ... doesn’t care, because “it can be mitigated on the client side”

I DistriN=t

Why are implementations non-compliant?

> The provider may not know about it, because...

» ... the original OAuth standard is outdated
» ... they make invalid assumptions
» ... they assume the OAuth library handles everything

» ... OAuth looks deceptively easy to implement

I DistriN=t

Concluding Thoughts

Lessons Learned?

» It's hard to use these results to create generally applicable
advice

» Everyone makes different mistakes

» OAuch gives tailor-made advice per site

I DistriN=t

Lessons Learned

» Do not assume that a library is safe. Verify that it is.
» Update your packages regularly. Security protocols evolve.

> Do not rely on clients making great security decisions.

Enforce them.

I DistriN=t

Try it!

» The tool is available on https://oauch.io/

» Let us know if we can improve something

I DistriN=t

https://oauch.io/

Conclusions

» Having a formal verification of the OAuth2 protocol is great

» ... but we also need tools to verify practical implementations

» Alot of sites can benefit from implementing missing

countermeasures

I DistriN=t

DistriN=t

https://distrinet.cs.kuleuven.be/

Pieter.Philippaerts@kuleuven.be

