APISEC interactive workshop:
Application-level access control
for APl-based cloud applications

Architecture, tactics, patterns and
technologies

Bert Lagaisse, 2021/03/25

Bert.lagaisse @kuleuven.be

EEEEIDistriN=t

Overall 3-phase approach
Application-level access control for API-based cloud applications

. . . Example case studies
Ap p I I Cat| on 'd riven Example architectures and functional decompositions
req u | reme nts an aIyS |S Example security requirements and their variations

Feedback and refinement based on your case studies

Security architecture: tactics, solutions and trade-offs

G Possible architectural))
i . Their support in OAUTH and IdM systems.
SOIUt'OnS and the|r tl‘ade-OffS Support in actual technologies and implementations

oo Advan Ced Se rve r-S | d e Overview of server-side access control models
GImn ABAC, PBAC and multi-tenancy support
]

——— access CO ntrol Secure data access: crypto or policy ?

2 e DistriN=t

The goal of today: Patterns, tactics, building blocks

Common problems and their possible solutions

Reference Brain storm and : :
Architecture discussion moments: Solution mapping

« Basic assumptions vy « Consumer type — flow
« API Consumer types - * Flow — token type
3 @ Happy ® sad * Flow — technoloqgy
» Client-focused flows Surprised @ Confused v
ix Agree #% Disagree yc Oa.k
» Server-focused flows ® raser @ Sower « Azure AD

 Cognito

» Going beyond state of

 Tenant-side daemons
* The good, the bad &

the ugly _ .
X Brainstorm: practice
) Serv?r'S'de daemons | - Give us feedback based on your case studies
RV CRVTERSIER I - Do you recognize your system in (part of) this
architectural solution

- Gradual refinement based on your feedback

I DistriN=t

Quick recap:
2 example case studies
Reference architecture overview

LI3LISHIAINN IHIMOHLYA

LETER

2 example case studies G

E-Invoice e-Workforce

« E.g.: telecom provider sends out batch « Telecom provider uses many
of invoices to customers technicians to install network devices
— E-invoice offers this as-a-service in customer’s premisses

* Use cases: | . — eWorkforce provides technicians and
— Telecom provider uploads raw invoicing schedules appointments at customer

data to elnvoice
* Via employee on a web interface

e Use cases:

* Via a batch upload daemon — Telecom provider uploads batch of
— elnvoice does templating and sends out workorders at its customers
the invoices via, e-mail, snail-mail or — eWorkforce schedules the appointments
ZoTaik and plans technicians
» Telecom and E-invoice employees can .
configure templates, edit batches, etc... — End-user can see appointment
— End-user can inspect invoice online — Technician can report used materials for

« End-user = customer of the customer. billing

Basic (m)architecture of eBills application

1I3LISHIAINN INIMOHLYN

Functional subsystems and logical decomposition

Customer
premise

UploadAgent per
customer

(Headless Daemon)

Back-end

APl tier services

eBillsAPI
* Put(File)
< * Get(BatchID)

* Get(BilllD)
» Get(DateTimeRange)

Web tier

UploadPortal
« Upload file per file Many Background

Workers : split, layout,
send, join

Browser
(stateless)

Browser
(JavaScript)

Employee
Desktop App

AnalysisPortal
* Visualize bill stats

BillViewer
* Rich web client to view bill

App-specific IAM

* Manage customers and
employees

* Get(EndUserID)

Customer Metadata API

>

B2C End-User IAM:

E.g. Google,
Facebook, Microsoft

Basic (m)architecture of eWorkForce application

1I3LISHIAINN INIMOHLYN

Functional subsystems and logical decomposition

Customer }
Web tier APItier ~ Back-end

premise services

WorkQOrderPorta
* Web interface for work order

UploadAgent per
customer

WorkOrderAPI

» Put(new workorder)
-« GetWorkOrder(id)

Background
Workers :
schedule and reschedule

input and follow-up

(Headless Daemon)

AnalysisPortal
Browser
» Track work order and
(stateless) “= appointments stats
BN Appointment Viewer
Browser pp)]
. * Rich web client to view « GetAppointment(id)
(JavaScript) appointment for end-user . Get(DateTimeRange)

AppiontmentAPI

(UsersiAM
Customer IAM system * Manage customers and their E | IAM
(e.g. KeyCloak) [employees’ permissions Customer Metadata API mployee
(e.g. Azure AD)
Employee

Desktop App B2C End-User IAM:

. - E.g. Google,
End-user Mobile app | Facebook, Microsoft

With browser

Client tier

Customer

Web-server

i

Browser

Datacenter Provider Provider Provider
facade web server buz tier data tier
3 N
3 o
N, \ g .
N N ' .2
\ ; -7
. Apil / -7
. oxmm -
3 X ACSE
I T
~ HH
| \-
\' \
Api2 Y
—
(..]
s W
I
</> _ﬂF
/ I
tenant-side daemon server-side web app Api

External
3 party
services

server-side daemon

External authn and authz Internal authn and auth

Customer Security Provider Provider Provider External
Web-server facade web server buz tier data tier 3 party
services

Client tier

Customer IAM

E.g. Google, o ()
Facebook, Microsoft :. ;; [

B2C Social login: Login endpoint

Token endpoint

Feedback from the previous workshop

Previous meetings vs today’s meeting

> Oauth basics
> Application cases

» Variating subsystems
» Variating consumers of API
> Reference architecture
» types of sub systems
» Deployment view
> Analysis, requirements, concerns

» Wrt identity and access management
» Wrt authentication and authorization

Solutions, architecture, tactics,
patterns, ...

» Multi-tenancy and laM

» Advanced token acquisition

» For authn/authz
» Client-focused
» Server-focused
» Fighting your daemons
» Tenant-side

» Provider-side

I DistriN=t

Feedback from previous workshop

Current approaches and interests

» Current approaches > Major interests

»

» Rest-based APIs

» Externalized IAM
» Self-managed (e.g. KeyCloak) »

» As a service (e.g. Azure AD)

»

» OpenlD Connect and Oauth

»

» ldentity and access tokens:

» Jwt and claims »”

Daemons
» On client
» On server-side
Token flows with a client-focus
» Sender-constrained tokens
Token flows with a server-focus
Identity delegation/impersonation
» for distributed flows
Secret management

» For calling external services

I DistriN=t

Reference Architecture
& architectural solutions:
basics and focus

Authentication, authorization

ES
o
o
>
m
=
m
=
=
<
m
=)
@
=
m
=

F
m
C
et
m
=

Authentication (AuthN) Authorization (Authz)
» The process of proving that « Grant an authenticated
someone or something is who entity(someone or something)
she/he/it claims to be. permission to do something
« E.g using OpenID Connect « E.g. using the OAuth 2.0 protocol
« Results in a proven identity » Results in an access token

. An application would like to
connect to your account

The app Sample App by Aaron Parecki would like the
ability to access your basic information and photos.

Allow Sample App access?

Deny Allow

Externalizing identity and access management:

LI3LISHIAINN IHIMOHLYA

LETER

Based on security tokens

Security tokens Parties

» ldentity token: proves identity of a
user as verified by the externalized
identity provider (IdP)

— Security token server (STS)

— E.g. SAML or OpenlID Connect token _I
« Access token: Oauth 2.0 T— || tokens ||
— Contains app id (client) and permissions

to access a resource (audience)
— Often shorter-lived TTL

 Refresh token:
@ <)

— Longer-lived

— To get a new access token | tokens II

WebApp or API
(Relying Party)

Single-tenant vs Multi-tenant API: token validation 35

How to support multi-tenancy ?

> Single Tenant API with multitenant IAM:

» APl bound to 1 IAM system of the provider
» APl only trusts this 1 1AM system
» Not considering dedicated tenant deployments
» Token validation library handles most checks
» Application-level validation of permissions
» Provider IAM system can delegate and redirect
to tenant IAM for user authn and authz

» Provider |AM translates attributes in tenant tokens
to provider attributes. ‘

CE

Multi-tenant API

» Token validation library: Any token coming from
any IAM system accepted

» OR Multi-plex validation config per tenant...

» Application-level logic:

» Complex validation if token is coming from an
“accepted tenant IAM system”.

» Complex validation if token is coming from an
accepted client application.

» Complex attribute mapping

(PN
-

®

— [

—

il

I DistriN=t

Token acquisition from several types of apps:

> With a signed-in-user As application

DistriN=t

Token acquisition:
APl Consumer-provider
variation scenarios

Supporting client variation with

OAuth 2.0 and OpenlID connect

OAuth 2.0:
Authorization protocol

» Variation per type of client: basics
— Implicit grant flow
— Authorization code grant (+PKCE)

— Resource owner password
credentials grant (ROPC)

— Client credentials grant

» Flows beyond basics/standards:
— Hybrid flow
— On-behalf-of flow

» Token-exchange flow
— Device code flow

OpenlID Connect:

Authentication protocol

Securely login a user to an
application

Interactive authentication
« Without exposing password to app

e Built on OAuth 2.0

Extends OAuth 2.0 for use as an
authentication protocol

LETER

LI3LISHIAINN IHIMOHLYA

Token acquisition:
client-side token-exposure and
storage

Single page app
Token acquisition variation

> Implicit flow
» Get ID token and access token directly from
authorization endpoint
» In url fragment !

» No refresh token

» Authorization code flow

» First get a “short” authorization code
» Get access token with this code
» Refresh token to renew access token

> Hybrid flow

» |D token + authz code from authz endpoint instead
of token endpoint

» Access token from token endpoint
> PKCE ?

User Browser Authorization Server WebAPI
click login link)

redirect to authorization URI

v

authorization

authenticate and consent

id token
access token

v

Retumn token in fragment

ol
e |

call with bearer token in header .
Lal

validate token :

return secure data to SPA

r Y

token expires l

SPA sends hidden sign-in request
L

check valid browser session :

Retumn token in fragment

r Y

User Browser Authorization Server WebAPI

Authz code grant flow
e.g. client app with browser

» url fragment might be too limited for

» All claims

» All access tokens

» Protecting the token

> Authorization code flow

» First get a “short” authorization code
» Get access token with this code

» Refresh token to renew access token

> Refresh token must be protected!
» Should be rotating!

» Should be sender-constrained!

Authorization Server

h 4

authorization

User User-Agent Client
1. click login link "
L
< 2. send authorization request URI
3. redirect to authorization URI
4. authenticate and consent
P 3. redirect to client callback URI
e |
6. navigate to client callback URI
Ll
authz code
7. exchange code for token
L
< 8. access token
access token
User User-Agent Client

Authorization Server

Auth code grant flow (2)

Id token also via code

User User-Agent Client Authorization Server

1. click login link

), BOth access tO ken 2 5end authorization request URI

3. redirect to authorization URI

[
L

[
L8

and id token

4. authenticate and consent

v

9. redirect to client callback URI

are obtained via authz code ‘

6. navigate to client callback URI
L

[
authz code

7. exchange code for token
Lal

B. access token

ol
|

id token

access token

User User-Agent Client Authorization Server

Hybrid flow

Mix it. Fix it?

>

>

ID token + authz code from authz endpoint

»

Access token from token endpoint

Quote from Scott Brady (IdentityServer4):

»

»

Exposes tokens to the front-end
» in the same way as the implicit flow.
» acceptable when only dealing with identity tokens,

» assuming you are using nonce validation.

Requesting an authorization code and an identity token
from the authorization endpoint at the same time can
even be advantageous for the client application.

» Performing nonce validation early can be beneficial,

» Checking the code hash (c_hash) allows the client
application to detect authorization code injection.

User

User-Agent

1. click login link

Client

B
Lo

< 2. send authorization request URI

3. redirect to authorization URI

Authorization Server

4. authenticate and consent

v

authorization

User

<l
-

v

9. redirect to client callback URI

6. navigate to client callback URI
Ll

User-Agent

id token

i
3

7. exchange code for token o
L

token

B. access token

F 3

id token

access token

Hh

Client

Authorization Server

www.websequencediagrams.com

Security considerations: implicit, authz code, hybrid
PUBLIC client-side consumers: SPA, Desktop and Mobile apps

>

Client receives the authorization code
from the redirect URI.
» App parses redirect URI in browser

» protect against other apps on device

Avoid Implicit flow grant

» Easier, but can’t offer this protection

» Other apps can subscribe for redirect URI
and steal the access token

use PKCE: Proof Key for Code Exchange

Weak spot: refresh token !

(5, navigate +o {ﬁor‘qe,d eallbock

&, exchan code
1. awceess +oken

%. avthorized as User

|
I DistriN=t

Proof Key for Code Exchange (PKCE)

User

» Bind an authorization code

User-Agent Client

Authorization Server

1. click login link

I
Ll

to a client’s session

» Client generates a random secret per
authorization request

» Client sends the hashed secret in the

< 2. send authorization request URI

3. redirect to authorization URI (+code challenge)

|
L

[
authorization

4. authenticate and consent

v

authorization request

» When it exchanges the authorization code
for an access token, it also sends the secret

» The server can hash and compare the two
hashes

User

User-Agent Client

5. redirect to client callback URI

4l
|

6. navigate to client callback URI o
Ll

7. exchange code for token (+code verifier)

.
Ll

[

8. access token

"l
-

access token

Authorization Server

www.websequencediagrams.com

Proof Key for Code Exchange (PKCE)

REQUEST

GET /authorize?response_type=codeé&client id=s6BhdRkqgt3&state=xyz
&redirect uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

&code challenge=rLGaly..5Z5Dc&code challenge method=S256 HTTP/1.1
Host: server.example.com

REQUEST

POST /token HTTP/1.1

Host: server.example.com

Authorization: Basic czZCaGRSa3FOMzpnWDFmQmEFOM2JW
Content-Type: application/x-www-form-urlencoded

grant_ type=authorization code&code=SplxlOBeZQQYbYS6WxSbIA
&redirect uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb
&code verifier=8WBGM8cbVT.bRzqts370

27 I DistriN=t

Other techniques for sender-constrained tokens
Next to PKCE

» Demonstration of Proof-of-Possession

» Client presents public key and access token to the
Authorization Server
» Encoded as JWT
» Signed with private key of client
» API can verify that client possesses the private key
of same keypair

» Mutual TLS Sender Constrained access token

» Bound to underlying mutual TLS connection
between client and AS

> Both require asymmetric key pair management
or PKI/Certificates

28 I DistriN=t

Refresh token rotation
Authorization servers must rotate refresh token on each use

)

on each request to exchange a
refresh token for a new access
token

» Return new refresh token

» Invalidate previous refresh token

Especially for public clients

Requires more complex server-side
management and infrastructure!

>

>

Refresh token reuse detection
» Reuse of a previous RT
» |nvalidated already previous RT
» Invalidate current RT

» |nvalidate access token.

Grace period

» For users with connection problems

I DistriN=t

Resource owner
password credentials

User

usemame/password

7

Browserless app

Client Authorization Server WebAPI

> ROPC: DO NOT USE
» “maybe in DevOps”

Alternatives are available and
recommended

Requires high-degree of trust in
client application

» Private, trusted client application.
» Not public one !

» Password goes in plain text trough
the client application

User

g

client
secret

ClientiD/Secret + usemame/password

>

token endpoint

< id token, access token, refresh token

id_token
access token
refresh token

call with bearer token in header

[
Ll

validate token :

return secure data

4
Client Authorization Server WebAPI

www.websequencediagrams.com

Device code flow — &

. User Client Browser Authorization Server WebAPI
For IOT devices
ClientlD .
> For clients ‘dev.cec.m e""p‘"”'l‘l
» Browserless SyStemS < device code, user code, verification uri
user code

Y

» Limited input device (IOT device)

. login endpoint
» Involves 2 devices I:I

, auth challenge
|

» User device with browser

user authenticates

h 4

» Client: 10T device loop
ClientlD, device code

> Better than ROPC
token endpoint

D @ auth pending, wait

ClientlD, device code
+ +

D ; , Id token, access token, refresh token
|

Browserless app 10T device User = Client Browser Authorization Server WebAPI

h 4

I

b 4

32

Server-side token acquisition

Server-side Web app
authz code / hybrid 1.tk ogn

2. send authorization request URI

User Browser WebServer Authorization Server AP

v

&

3. redirect to authorization URI N
Ll

» To authenticate a user
» Protecting the web app authorization

4. authenticate and consent

v

» Using an externalized IdP
5. redirect to client callback URI

&

» Redirect to IdP to enter credential

6. navigate to client callback URI
Ll

» OpenlD connect

» Web app validates received id token aen
> To call web api on behalf of user R —

» Web apps that call web APIs are confidential client @

applications 7. exchange code for token
» Application secret or certificate

» Web app authorizes itself AND acts for the user B access token

> Also used in web application firewalls and micro- [atoken|
service platforms
» WAF stores the access tokens (the real meat) _retum secure page and session
» Browser gets a cookie) call with access token >

User Browser WebServer Authorization Server API1

www.websequencediagrams.com

Machine 2 machine, without user:
Oauth 2.0 client credentials grant flow

interactions in name of application accounts

y “two-legged Oauth”

: 1. request access token for API‘I

client WebServer
| | Secret WebServer

Apil “

@ : call with tnken; bi

| client_id=WebServer
| aud=API1

2. access token

1
return secure data
1

« . i

www.websequencediagrams.com

Calling downstream API’s
Delegation and impersonation

Calling a downstream API
Conceptual identity flow variations with proof

ﬁ « User Bert * Incoming * Incoming

« App Web0 token ? token

» (WebO0,Bert) (null)

* (Web0) * (WebO0,Bert)

* (Web0)

* (Apil,Bert)

* (Apil)

* (WebO0 via
API1)

* (WebO via
API1, Bert)
\ y, g _J \ y,

= DistriN=t

Calling a downstream API
WebApp =2 API1 - API2 - external API

> Delegation: A still has its own identity
separate from B

A imperSOHateS PTinCipa| B » B may have delegated some rights to A

» Actions taken by A representing B

» Impersonation: When Principal

» A'is given all the rights of B
» Alis an agent for B

» Als indistinguishable from B » Tokens are composite token containing
mwA=B both the subject and actor (subject

» For receivers of a token coming token B and actor token A)

from A, they think they are
dealing with B

I DistriN=t

Simple forwarding
Just forward the token

» Audience per downstream API.

» GW/WAF just forwards

»

OR all APIs are composite audience

» - All downstream APIs are API1 (depicted)

» No intermediate call to authz server

S1 | >g
SPA @ @ o=
. o

2= 2=

User Client

> Often used when API1 is a gateway / WAF

Authorization Server API1

API2 API3
any token acquisition flow N
L
token endpoint
, Id token, access token, refresh token
-
id_token
access token
refresh token
call with bearer token in header N
L
client_id=Client
aud=API1
sub=bert
call with original token
Ll
client_id=Client
aud=API1
sub=bert
call with original token N
L
Client Authorization Server API API2 API3

www.websequencediagrams.com

I DistriN=t

Calling a downstream API
Just call as app without user id

» Get new token from authz server
» Specific for API1 as client

» Specific for API2 as audience(target)

> Using client credentials grant flow

> Using client id and secret of the middle tier API1.

» Acquire token 2 for API2
» Acquire token 3 for API3

» Token can be reused within TTL

» Then use refresh token.

) XD

B =

SPA ’.
2=

Client Authorization Server API1 API2 API3

call with bearer token 1 in header

v

client_id=Client

aud=AFI1
sub=bert
, Client credential grant for API2
e |
client API1
Secret AP
token 2
___________ oken2 ________,
call with token 2
Ll
client_id=API1
aud=API2
, Client credential grant for API3
-
client API1
Secret API1
token 3
___________ okend ________y
call with token 3 =
Ll
client_id=API1
aud=API3
Client Authorization Server API1 API2 API3

www.websequencediagrams.com

Calling a downstream API

API3
call with bearer token 1 in header >
Token exchange flow i
sub=bert
> Get new token from authz server token exchange for API2
» Specific for API1 as client oken 1
» Specific for API2 as audience(target) Secrel AT
. . . . token 2
» Containing user id and user claims (id token) T > R
call wi oken)
> Called API 1 becomes calling client to API2 ——
. aud=AFI12
» Uses received token to exchange for a new sub=bert
token containing , token exchange for API3
» Subject (user identity) —
. . client API1
» New Calling Client API1 Secret API1
» New Called Audience API2 token 3 R
@ (o0] call with token 3 >
I >¢ client_id=AP11
0 : .
& — Client Authorization Server API1 API2 API3
= 40

www.websequencediagrams.com

Calling an external API out of your admin domain
Retrieve key or credential from a secrets store
» E.g. AWS secrets manager > E.g. Azure Key vault

» Requires AWS credentials » REST API
» Protected by Azure AD

» Authn and access policies

» Additionally and optionally
» Protected by firewall (IP)

1 I DistriN=t

Fighting your daemons
Client-side and server-side

Tenant-side daemons
The good, the bad and the ugly

User, app and permission
In externalized IAM systems.

y Users

» Can be part of a group
» E.g. group tenant A
» Can have application roles
» E.g. tenant-admin
» Can have custom permissions

» E.g. {manages: TenantA}

management

> (Client) Applications
» Limited set of attributes
» NO groups
» Permissions depend on specific
IAM solutions
» Fixed scopes per API
» Flexible scopes per API

» Not as easy to manage as users

I DistriN=t

Tenant-side daemons via client credentials grant
Managed by the IAM system of the tenant or the provider

> Single-tenant API > Multi-tenant API
» |AM of provider manages all users and » |AM system of tenant is used to
client apps (no redirect to tenant IAM) authenticate and authorize users and

» Tenant gets client id and client secret for applications

their client daemon from provider » Provider trusts tenant IAM system and
tokens to do operations within the data

space of the tenant.

[4 z » Complex token validation logic !

- A0 5
= 213 Q28 i
ﬁ a I DistriN=t

o g Re

Tenant-side daemon: how to manage 200 daemons ?
How to manage, authenticate and authorize tenant-side daemons ?

» With an active user

» AS a user: auth code + pkce

» When bootstrapping the daemon
» Via browser

»» Access token
»»long term refresh token

» Groups ! User permissions !
» The UGLY

» AS an application:

» client credentials grant

» with interactive admin consent before

Without an active user

» As an application: client credential grant
» The (lesser) GOOD

» Apps with only coarse grained scopes
(APIs)

» The GOOD

»» Apps can get fine-grained permissions

»» “data-reader”, “data-writer”, “tenant4”
» As a synthetic user
» ROPC ®
» Username and password also stored

» User can do more than App in enterprise!
» THE BAD: fully trusted client ?

I DistriN=t

Provider-side daemons:

Don’t divide and conquer
United we stand

User:WebApp—2>API1->Queue->Daemon->API2 (1d?)

Queue = communication channel with bearer token alike auth ?

» Separate applications and clients , Composite app with shared token
Provider Provider Provider Provider Provider Provider
web server buz tier data tier web server buz tier data tier
0 Api 1 = 0 Api 1
25 oxmm 3 2S5 ocxmm
oo 55 = . Wy o] = 1. iy
——— \ 4 @ —— —— \ /
M G N
App a_ 7N - O, |\ -
qL__,-—_, eI —
© -— a (=]

Compiling variations:
flows, consumers and technologies

Which flow supports which token ?
Access token and/or id token

Flow/Grant type

Implicit

Authz code

Authz code + PKCE
Hybrid

ROPC

Token exchange
Device code

Client credentials

< < < < < < < <

Vv

X < < < < < <

= DistriN=t

Which flow for which client type ?

Server-side web app Authz code flow
SPA Authz code + PKCE
Native (mobile, desktop) Authz code + PKCE
Fully trusted client (ROPCQC)
Daemon Client credentials (ROPC)
(shared) token exchange (shared) token exchange
API Client credentials, Token exchange

token exchange
IOT device Device code

51 I DistriN=t

Flow/Grant overview
And their implementations in (some) technologies and managed services

implicit

Authz code Vv Vv Vv Vv Vv Vv
Authz code+PKCE \% \% \% \% \ \Y
Hybrid flow \% Vv \% \%

Client Credentials \Y Vv \Y \Y, \Y \Y
Token Exchange V (loosely) V(delegation) V (OBO)

ROPC \% \% \% \% \Y
Device code Vv Vv \Y,

RT rot. (single use) +/- (revoke) \% X X \% \%

52

Ongoing DistriNet research
& Open Challenges

Dynamo: Monitoring and analytics of application-level
authentication and authorization in cloud apps

Reference architectures

« Variations of cloud application
architectures
* Microservice based
*web apps
capi’s
* Sub-services/components
* Background worker
« Client variation

U

Monitoring probes

* Trace incoming http traffic
* Trace outgoing http traffic

* Implementation-level
*Non-intrusive pure config-based

*Scalable and performant monitoring

U

Communication channel

*Push-based collection of monitoring
datain back-end

*Synchronous and asynchronous
*Single and Batch

*Extensive performance analysis

U

Off-line Analytics and
visualization

« http-interactions in 1 service

* All incoming & all outgoing
« Correlations within a trace
*Distributed flows of Micro-services
* Sub-components (controllers)
*External services (azure)
*Authn & Authz statistics
*Timing

Blazor Tracer Sl 01-02-2021 = BN 23-02-2021 =l Scope FetchData Traces PP AERNRET VISR Analyse

X | action VI XFilter I | Y l identity Vl YFilter I | Values I CountBubble Vl Scale I | Logarithmic I:

App: Claimsldentity 3566 1dab-5573-4ac1-9b9f-d0f5d225028

9
"
o
o
o
o
"

System: Genericldentity 4

System: Windowsldentity @ @ @ o @ @

User: Claimsldentity BDL | @

Q
o

User: Claimsldentity bert lagaissa

User: Claimsldentity Bert Lagaisse @ @ | | | | o
User: Clail bert lleuven. be | | @ @ @
User: Claimsldentity bert@distrinet.onmicrosoft.com | | 9 o o

User: Claimsldentity Beril | @

User. Claimsldentity bertlocal

User: Claimsldentity blagaisse

User_ Clail live._cor i 10imail be

S I - I -
S - I
&

B
o
.
o
)

SR Ly
Chy e
PO OTE)
POT O LELL]
LTy
T CTIPLA T
TS0
0GR]
OO WELIAR
D TELIAR
ASOROLIE
elEjsayng
EOETIoR0]

* |Reazon v| N |identity | Values | [EE=IREEE | O Tuncate labels

Demo and examples o
Monitoring for AAA

System: WindowsIdentity] @

> Which identities did actions that resulted in User Claimsldentity BDL
“unauthorized” and in which quantity? (1)

> Which identity is used in which micro-service for
which action.

» Problem to find: are certain actions executing under
the wrong kind of principal (System, app or user)

> Which tokens contain which identities (app and
user) and result in successful authorization
» Which dont ?
> Which identity is used by micro-services when
calling other micro-services User: Claimldentity blagaiss

Mser: ClaimsIdentity bert lagaisse

Tser: Claimsldentity Bart Lagaisse

Tsey: Claimsldentityhert lazaisse@lmlanven be

Tser: Claimsldentity Berl,

> How are an identity and its permissions
propagated throughout the architecture towards
downstream microservices ? (2)

User: ClaimsIdentity live com#blagaissei@hotmailbe|

PROS O

PAELAOYJEL)

0L TATHSG TEILISI]

Blazor Tracer STl 01-02-2021 = Bel 23-02-2021 =l Scope Fetch Data | Traces PRIV IRET IO NEERE Analyse

X | module VI XFilter I | Y I identity Vl YFilter I | Values I IdentityDivision Vl Scale I | Logarithmic w

ra

[slo] 74

App: Claimsldentity 3566 1dab-5573-4ac1-9b97-d0f5d2215028

R (SIS] R (SR 5 5 =ow (ST | N (SR | S R &)
System: Genericldentity I I
| - - - - - - - | | - - -
== = 515 e 15 £ (515 & = aE Lo ==
@ =) oo D =11 @ 313 co

System: Windowsldentity

B

.

||

e el
n

]

.

User: Claims|dentity 0L

gl

User: Claimsldentity bert lagaisse

s
o

al

User: Claims|dentity Bert Lagaisse

Zl
(1}

User: Claimsldentity bert lagaisse@kuleuven.be

B
g |
i

User: Claims|dentity ber@distrinet.cnmicrosoft.com

Zl

User: Claimsldentity BeriL

18
ac

User: Claims|dentity bertlocal

ED]
|

User: Claimsldentity blagaisse

Zl
tl
t
T

User: Clail ity live.cor

ey
Jesp]
wasis
EET=TS)

SOPLI

dehy e o e ()

O LRE O LA SO IELAL]
AONUESOPTIELIEUAL
delegonetieiy]
delejsagrng

UG WEE B opo]|

B =i e p—
7 T
POy 1
MOPULU WEE U WEL]

e ERE (ORI (]
mHuanbiFyggopo e

OO

[Client@ 155,190 253,149 TodoList Webf@RDOO0SFF08d] todoservice@RDO00SFEZSAEFY] Logn@hzre] [ADGraphtPl@bmrd

i Homme Inde
Mo token
20000y _ _
Mo token
AU (Unathorizd)
Ho taken
[ceocuntSignin o |dbcoonmt Siznl
Ho token v
fdistrinet onmicrosoft comd well-lnownlo peid-copfianation
unknoem I
@0y o | - _____
*u.tﬂ{rmm
Jeommarnidiscoveryiheys
unknoem
week |
unlnoam
Mser: ClanmsIdentitybert lagaissei@lnlerren be ! Horme Indes:
Mo taken
fdistnet ormmicrosoft comioathidtoken
unknoen I
a0k o |\ _ _ _ __
*u.rﬂ{mwn
Tser: ClaimsIdentitybert lagaissei@lnlemmen be S02Feandy
Ho token
ey ClaimsIdentitybert lagaissei@lnlemmen be 000Ky
Mo token [(Coolkie, Chaindadh)
ser: ClaimsIdentity bert lagaisseq@lolarmen be ! o [Homme Indes
Mo token(Cookie Cwindaly
ser: ClanmsIdentity bert lagaissed®lolewnen be MserProfile » UserProf'ﬂE.Im
Mo token(Coalkie Cradndadl)
Mser: Claimsldentitybert lagaissei@lnlemren be F53Tee M1 6-£779-411 7-Feba-cBEE00550 Live
Bert Lagaisse [- UTserFead ETT]
ey Clanmsldentitybert lagatssei@lnlemmen be o0y -
Bert Lagaisse[- UserFead ETT]
Tser: ClaimsIdentitybert lagaissei@lnlemmen be 000 1
Mo token [(Cookis, Craandadh)
ey ClaimsIdentitybert lagaissei@lnlemmen be ITodalist " TndnList.I;E
Mo token [Coolkie, Chaandadh)
ser: ClaimsIdentitybert lagaissef@lnlanmen be Histrinet ammicrosoft cominathittaken
unknoem
ser: ClaimsIdentity bert lagaisseq@lolarmen be " o0k
unknoem
Mser: ClanmsIdentitybert lagaissei@lnlerren be fapiftodolist todalist
Eert Lagaisse [-user_impersonation)
Mser: Claimsldentitybert lagaissei@lnlemren be 000
Eert Lagaissa | -user impersonation]

Interesting first conclusions in the project:

Shift in original focus of application providers...

From: user-behavior analysis

 Did the user mishehave ?

» Are attackers trying to break-in
into my web application ?

» Find security breaches

To: application-dev analysis

« Did the application dev use the right
authentication and authorization in
the right places ?

» Detect weak spots in the reversed
architecture

— “Because we don’t know our actual,
explicit security architecture”

— “Because we didn’t create a security
architecture up-front, or after the
implementation”

LETER

LI3LISHIAINN IHIMOHLYA

When token is presented to API
Open challenge: How did you get that token ?

> Token does not specify how it was obtained: > Answers from IAM-aas providers (Twitter):
» “Not standardized afaik. Your IdP may add it as a claim

» Implicit flow
if you control it to that degree. “

» Authz code » “You can’t derive that information from the token alone

» Authz code + pkce I'm afraid. Is there a reason you need to know this?”

y Interesting for API providers » “Interesting one. Pretty sure our implementation
(PingFederate) would provide a technical means to

accomplish this by mapping the response type into a
» How many legacy clients still active ? token claim, but it's not a use case I've heard of before.
May | ask why you'd want to do this?”

» Monitoring, management, certification

» How active are these _ _
» “In Azure AD, you might able to see that client

credentials was used for an access token as the aud

y Authorization server knows would be something ending with /.default. No way to
find it out for others AFAIK.”

» |s that dev still using that implicit flow !?

» Self-managed: check logs

» As-a-service ... ?

I DistriN=t

After the holidays:
Advanced application-level access

control research
leveraging ABAC and PBAC

DistriN=t

https://distrinet.cs.kuleuven.be/

