
Architecture, tactics, patterns and

technologies
Bert Lagaisse, 2021/03/25

Bert.lagaisse@kuleuven.be

APISEC interactive workshop:

Application-level access control

for API-based cloud applications

Overall 3-phase approach
Application-level access control for API-based cloud applications

2

Application-driven
requirements analysis

Example case studies

Example architectures and functional decompositions

Example security requirements and their variations

Feedback and refinement based on your case studies

Possible architectural
solutions and their trade-offs

Security architecture: tactics, solutions and trade-offs

Their support in OAUTH and IdM systems.

Support in actual technologies and implementations

Advanced server-side

access control

Overview of server-side access control models

ABAC, PBAC and multi-tenancy support

Secure data access: crypto or policy ?

The goal of today: Patterns, tactics, building blocks

Reference
Architecture

• Basic assumptions

• API Consumer types

• Client-focused flows

• Server-focused flows

• Tenant-side daemons

• The good, the bad &
the ugly

• Server-side daemons

• “united we stand”

Brain storm and
discussion moments:

Solution mapping

• Consumer type – flow

• Flow – token type

• Flow – technology

• Keycloak

• Azure AD

• Cognito

• …

• Going beyond state of
practice

Common problems and their possible solutions

Brainstorm:

- Give us feedback based on your case studies

- Do you recognize your system in (part of) this

architectural solution

- Gradual refinement based on your feedback

Quick recap:

2 example case studies

Reference architecture overview

E-Invoice

• E.g.: telecom provider sends out batch

of invoices to customers

– E-invoice offers this as-a-service

• Use cases:

– Telecom provider uploads raw invoicing

data to eInvoice

• Via employee on a web interface

• Via a batch upload daemon

– eInvoice does templating and sends out

the invoices via, e-mail, snail-mail or

zoomit

• Telecom and E-invoice employees can

configure templates, edit batches, etc…

– End-user can inspect invoice online

• End-user = customer of the customer.

e-Workforce

• Telecom provider uses many

technicians to install network devices

in customer’s premisses

– eWorkforce provides technicians and

schedules appointments at customer

• Use cases:

– Telecom provider uploads batch of

workorders at its customers

– eWorkforce schedules the appointments

and plans technicians

– End-user can see appointment

– Technician can report used materials for

billing

2 example case studies

Basic (m)architecture of eBills application

Functional subsystems and logical decomposition

Customer

premise
UploadAgent per

customer

(Headless Daemon)

Browser

(stateless)

Browser

(JavaScript)

Customer IAM system
(e.g. Cognito)

Web tier

UploadPortal

• Upload file per file

AnalysisPortal

• Visualize bill stats

BillViewer

• Rich web client to view bill

App-specific IAM

• Manage customers and
employees

API tier

eBillsAPI

• Put(File)

• Get(BatchID)

• Get(BillID)

• Get(DateTimeRange)

• Get(EndUserID)

Customer Metadata API

Back-end
services

Many Background

Workers : split, layout,
send, join

Employee IAM

(e.g. KeyCloak)

End-user Mobile app

With browser

B2C End-User IAM:

E.g. Google,
Facebook, Microsoft

Employee

Desktop App

Basic (m)architecture of eWorkForce application

Functional subsystems and logical decomposition

Customer

premise
UploadAgent per

customer

(Headless Daemon)

Browser

(stateless)

Browser

(JavaScript)

Customer IAM system
(e.g. KeyCloak)

Web tier

WorkOrderPortal

• Web interface for work order
input and follow-up

AnalysisPortal

• Track work order and
appointments stats

Appointment Viewer

• Rich web client to view
appointment for end-user

UsersIAM

• Manage customers and their
employees’ permissions

API tier

WorkOrderAPI

• Put(new workorder)

• GetWorkOrder(id)

AppiontmentAPI

• GetAppointment(id)

• Get(DateTimeRange)

• …

Back-end
services

Background

Workers :

schedule and reschedule

Tenant management

• Customer data

Employee IAM

(e.g. Azure AD)

End-user Mobile app

With browser

B2C End-User IAM:

E.g. Google,
Facebook, Microsoft

Employee

Desktop App

Customer Metadata API

Client tier Customer

Web-server

Provider

web server
Datacenter

facade

Provider

buz tier

Provider

data tier

Api 1

Api 2

External

3rd party

services

Apitenant-side daemon server-side daemonserver-side web appSPA BrowserApp

Client tier Customer

Web-server

Provider

web server
Security

facade

Provider

buz tier

Provider

data tier

Api 1

Api 2

External

3rd party

services

Provider IAM SubsystemsLogin endpoint

Token endpoint

Customer IAM
B2C Social login:

E.g. Google,
Facebook, Microsoft

Internal authn and authz ?External authn and authz

Feedback from the previous workshop

Previous meetings vs today’s meeting

› Oauth basics

› Application cases

Variating subsystems

Variating consumers of API

› Reference architecture

types of sub systems

Deployment view

› Analysis, requirements, concerns

Wrt identity and access management

Wrt authentication and authorization

› Solutions, architecture, tactics,

patterns, …

Multi-tenancy and IaM

Advanced token acquisition

For authn/authz

Client-focused

Server-focused

Fighting your daemons

Tenant-side

Provider-side

Feedback from previous workshop

› Current approaches

Rest-based APIs

Externalized IAM

Self-managed (e.g. KeyCloak)

As a service (e.g. Azure AD)

OpenID Connect and Oauth

Identity and access tokens:

Jwt and claims

Current approaches and interests

› Major interests

Daemons

On client

On server-side

Token flows with a client-focus

Sender-constrained tokens

Token flows with a server-focus

Identity delegation/impersonation

for distributed flows

Secret management

For calling external services

Reference Architecture

& architectural solutions:

basics and focus

Authentication (AuthN)

• The process of proving that

someone or something is who

she/he/it claims to be.

• E.g using OpenID Connect

• Results in a proven identity

Authorization (AuthZ)

• Grant an authenticated

entity(someone or something)

permission to do something

• E.g. using the OAuth 2.0 protocol

• Results in an access token

Authentication, authorization

Security tokens

• Identity token: proves identity of a

user as verified by the externalized

identity provider (IdP)

– Security token server (STS)

– E.g. SAML or OpenID Connect token

• Access token: Oauth 2.0

– Contains app id (client) and permissions

to access a resource (audience)

– Often shorter-lived TTL

• Refresh token:

– Longer-lived

– To get a new access token

Parties

IdP

+ STS

WebApp or API

(Relying Party)

Client

App

Externalizing identity and access management:

Based on security tokens

tokens

tokens

tokens

Single-tenant vs Multi-tenant API: token validation

› Single Tenant API with multitenant IAM:

API bound to 1 IAM system of the provider

API only trusts this 1 IAM system

Not considering dedicated tenant deployments

Token validation library handles most checks

Application-level validation of permissions

Provider IAM system can delegate and redirect

to tenant IAM for user authn and authz

Provider IAM translates attributes in tenant tokens

to provider attributes.

How to support multi-tenancy ?

› Multi-tenant API

Token validation library: Any token coming from

any IAM system accepted

OR Multi-plex validation config per tenant…

Application-level logic:

Complex validation if token is coming from an

“accepted tenant IAM system”.

Complex validation if token is coming from an

accepted client application.

Complex attribute mapping

consumer tier

consumer tier Token acquisition from several types of apps:

› With a signed-in-user › As application

Api1

tenant-side daemon

server-side daemon

server-side web app

SPA

Browserless app

Mobile App

Api2

Desktop app

IOT device

tenant-side daemon
Api1

daemon web app

Token acquisition:

API Consumer-provider

variation scenarios

OAuth 2.0:

Authorization protocol

• Variation per type of client: basics

– Implicit grant flow

– Authorization code grant (+PKCE)

– Resource owner password

credentials grant (ROPC)

– Client credentials grant

• Flows beyond basics/standards:

– Hybrid flow

– On-behalf-of flow

• Token-exchange flow

– Device code flow

OpenID Connect:

Authentication protocol

• Securely login a user to an

application

• Interactive authentication

• Without exposing password to app

• Built on OAuth 2.0

• Extends OAuth 2.0 for use as an

authentication protocol

Supporting client variation with

OAuth 2.0 and OpenID connect

Token acquisition:

client-side token-exposure and

storage

Single page app

› Implicit flow

Get ID token and access token directly from

authorization endpoint

In url fragment !

No refresh token

› Authorization code flow

First get a “short” authorization code

Get access token with this code

Refresh token to renew access token

› Hybrid flow

ID token + authz code from authz endpoint instead

of token endpoint

Access token from token endpoint

› PKCE ?

Token acquisition variation

Authz code grant flow

› url fragment might be too limited for

All claims

All access tokens

Protecting the token

› Authorization code flow

First get a “short” authorization code

Get access token with this code

Refresh token to renew access token

› Refresh token must be protected!

Should be rotating!

Should be sender-constrained!

22

e.g. client app with browser

Auth code grant flow (2)

› Both access token

and id token

are obtained via authz code

23

Id token also via code

Hybrid flow

24

› ID token + authz code from authz endpoint

Access token from token endpoint

› Quote from Scott Brady (IdentityServer4):

Exposes tokens to the front-end

in the same way as the implicit flow.

acceptable when only dealing with identity tokens,

assuming you are using nonce validation.

Requesting an authorization code and an identity token

from the authorization endpoint at the same time can

even be advantageous for the client application.

Performing nonce validation early can be beneficial,

Checking the code hash (c_hash) allows the client

application to detect authorization code injection.

Mix it. Fix it?

Security considerations: implicit, authz code, hybrid

› Client receives the authorization code

from the redirect URI.

App parses redirect URI in browser

protect against other apps on device

› Avoid Implicit flow grant

Easier, but can’t offer this protection

Other apps can subscribe for redirect URI

and steal the access token

› use PKCE: Proof Key for Code Exchange

› Weak spot: refresh token !

PUBLIC client-side consumers: SPA, Desktop and Mobile apps

Proof Key for Code Exchange (PKCE)

› Bind an authorization code

to a client’s session

Client generates a random secret per

authorization request

Client sends the hashed secret in the

authorization request

When it exchanges the authorization code

for an access token, it also sends the secret

The server can hash and compare the two

hashes

26

Proof Key for Code Exchange (PKCE)

27

GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz

&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

&code_challenge=rLGaLy…5Z5Dc&code_challenge_method=S256 HTTP/1.1

Host: server.example.com

REQUEST

POST /token HTTP/1.1

Host: server.example.com

Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Content-Type: application/x-www-form-urlencoded

grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA

&redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

&code_verifier=8WBGM8cbVT…bRzqts370

REQUEST

Other techniques for sender-constrained tokens

28

Next to PKCE

› Demonstration of Proof-of-Possession

Client presents public key and access token to the

Authorization Server

Encoded as JWT

Signed with private key of client

API can verify that client possesses the private key

of same keypair

› Mutual TLS Sender Constrained access token

Bound to underlying mutual TLS connection

between client and AS

› Both require asymmetric key pair management

or PKI/Certificates

Refresh token rotation

› on each request to exchange a

refresh token for a new access

token

Return new refresh token

Invalidate previous refresh token

› Especially for public clients

› Requires more complex server-side

management and infrastructure!

Authorization servers must rotate refresh token on each use

› Refresh token reuse detection

Reuse of a previous RT

Invalidated already previous RT

Invalidate current RT

Invalidate access token.

› Grace period

For users with connection problems

Resource owner
password credentials

› ROPC: DO NOT USE

“maybe in DevOps”

› Alternatives are available and

recommended

› Requires high-degree of trust in

client application

Private, trusted client application.

Not public one !

Password goes in plain text trough

the client application

Browserless app

Device code flow

› For clients

Browserless systems

Limited input device (IOT device)

› Involves 2 devices

User device with browser

Client: IOT device

› Better than ROPC

31

For IOT devices

Browserless app IOT device

Server-side token acquisition

32

Server-side Web app

› To authenticate a user

Protecting the web app

Using an externalized IdP

Redirect to IdP to enter credential

OpenID connect

Web app validates received id token

› To call web api on behalf of user

Web apps that call web APIs are confidential client

applications

Application secret or certificate

Web app authorizes itself AND acts for the user

› Also used in web application firewalls and micro-

service platforms

WAF stores the access tokens (the real meat)

Browser gets a cookie

authz code / hybrid

Machine 2 machine, without user:
Oauth 2.0 client credentials grant flow
interactions in name of application accounts

› “two-legged Oauth”
consumer tier

server-side daemon

tenant-side daemon
Api1

daemon web app

Calling downstream API’s

Delegation and impersonation

Calling a downstream API

Conceptual identity flow variations with proof
Web0

• User Bert

• App Web0

API 1

• Incoming
token ?

• (Web0,Bert)

• (Web0)

API 2

• Incoming
token

• (null)

• (Web0,Bert)

• (Web0)

• (Api1,Bert)

• (Api1)

• (Web0 via
API1)

• (Web0 via
API1, Bert)

Calling a downstream API

› Impersonation: When Principal

A impersonates Principal B

A is given all the rights of B

A is indistinguishable from B

A = B

For receivers of a token coming

from A, they think they are

dealing with B

WebApp → API1 → API2 → external API

› Delegation: A still has its own identity

separate from B

B may have delegated some rights to A

Actions taken by A representing B

A is an agent for B

› Tokens are composite token containing

both the subject and actor (subject

token B and actor token A)

Simple forwarding

› Often used when API1 is a gateway / WAF

Audience per downstream API.

GW/WAF just forwards

OR all APIs are composite audience

All downstream APIs are API1 (depicted)

› No intermediate call to authz server

Just forward the token

SPA

Calling a downstream API

› Get new token from authz server

Specific for API1 as client

Specific for API2 as audience(target)

› Using client credentials grant flow

› Using client id and secret of the middle tier API1.

Acquire token 2 for API2

Acquire token 3 for API3

› Token can be reused within TTL

Then use refresh token.

39

Just call as app without user id

SPA

Calling a downstream API

› Get new token from authz server

Specific for API1 as client

Specific for API2 as audience(target)

Containing user id and user claims (id token)

› Called API 1 becomes calling client to API2

Uses received token to exchange for a new

token containing

Subject (user identity)

New Calling Client API1

New Called Audience API2

40

Token exchange flow

SPA

Calling an external API out of your admin domain

› E.g. AWS secrets manager

Requires AWS credentials

41

Retrieve key or credential from a secrets store

› E.g. Azure Key vault

REST API

Protected by Azure AD

Authn and access policies

Additionally and optionally

Protected by firewall (IP)

Fighting your daemons

Client-side and server-side

Tenant-side daemons

The good, the bad and the ugly

User, app and permission management

› Users

Can be part of a group

E.g. group tenant A

Can have application roles

E.g. tenant-admin

Can have custom permissions

E.g. {manages: TenantA}

In externalized IAM systems.

› (Client) Applications

Limited set of attributes

No groups

Permissions depend on specific

IAM solutions

Fixed scopes per API

Flexible scopes per API

Not as easy to manage as users

Tenant-side daemons via client credentials grant

› Single-tenant API

IAM of provider manages all users and

client apps (no redirect to tenant IAM)

Tenant gets client id and client secret for

their client daemon from provider

Managed by the IAM system of the tenant or the provider

› Multi-tenant API

IAM system of tenant is used to

authenticate and authorize users and

applications

Provider trusts tenant IAM system and

tokens to do operations within the data

space of the tenant.

Complex token validation logic !

Tenant-side daemon: how to manage 200 daemons ?

› With an active user

As a user: auth code + pkce

When bootstrapping the daemon

Via browser

Access token

long term refresh token

Groups ! User permissions !

The UGLY

As an application:

client credentials grant

with interactive admin consent before

How to manage, authenticate and authorize tenant-side daemons ?

› Without an active user

As an application: client credential grant

The (lesser) GOOD

Apps with only coarse grained scopes

(APIs)

The GOOD

Apps can get fine-grained permissions

“data-reader”, “data-writer”, “tenant4”

As a synthetic user

ROPC 

Username and password also stored

User can do more than App in enterprise!

THE BAD: fully trusted client ?

Provider-side daemons:

Don’t divide and conquer

United we stand

47

Provider
buz tier

User:WebApp→API1→Queue→Daemon→API2 (id?)

› Separate applications and clients

Queue = communication channel with bearer token alike auth ?

› Composite app with shared token

Provider
web server

Provider
buz tier

Provider
data tier

Api 1

Api 2

Provider
web server

Provider
data tier

Api 1

Api 2

App

Compiling variations:

flows, consumers and technologies

49

Which flow supports which token ?

Flow/Grant type Access token ID token

Implicit V V

Authz code V V

Authz code + PKCE V V

Hybrid V V

ROPC V V

Token exchange V V

Device code V V

Client credentials V X

Access token and/or id token

Which flow for which client type ?

Client (Consumer) Access token Id token

Server-side web app Authz code flow

SPA Authz code + PKCE

Native (mobile, desktop) Authz code + PKCE

Fully trusted client (ROPC)

Daemon Client credentials

(shared) token exchange

(ROPC)

(shared) token exchange

API Client credentials,

token exchange

Token exchange

IOT device Device code

51

Flow/Grant overview

Technology KeyCloak IdentityServer AzureAD Cognito Auth0 Okta

implicit V V V V V V

Authz code V V V V V V

Authz code+PKCE V V V V V V

Hybrid flow V V V V

Client Credentials V V V V V V

Token Exchange V (loosely) V(delegation) V (OBO)

ROPC V V V V V

Device code V V V

RT rot. (single use) +/- (revoke) V X X V V

And their implementations in (some) technologies and managed services

52

Ongoing DistriNet research

& Open Challenges

Reference architectures

• Variations of cloud application
architectures

• Microservice based

• web apps

• api’s

• Sub-services/components

• Background worker

• Client variation

Monitoring probes

• Trace incoming http traffic

• Trace outgoing http traffic

• Implementation-level

• Non-intrusive pure config-based

• Scalable and performant monitoring

Communication channel

• Push-based collection of monitoring
data in back-end

• Synchronous and asynchronous

• Single and Batch

• Extensive performance analysis

Off-line Analytics and
visualization

• http-interactions in 1 service

• All incoming & all outgoing

• Correlations within a trace

• Distributed flows of Micro-services

• Sub-components (controllers)

• External services (azure)

• Authn & Authz statistics

• Timing

Dynamo: Monitoring and analytics of application-level

authentication and authorization in cloud apps

55

Demo and examples

Monitoring for AAA

› Which identities did actions that resulted in

“unauthorized” and in which quantity? (1)

› Which identity is used in which micro-service for

which action.

Problem to find: are certain actions executing under

the wrong kind of principal (System, app or user)

› Which tokens contain which identities (app and

user) and result in successful authorization

Which don’t ?

› Which identity is used by micro-services when

calling other micro-services

› How are an identity and its permissions

propagated throughout the architecture towards

downstream microservices ? (2)

57

From: user-behavior analysis

• Did the user misbehave ?

• Are attackers trying to break-in

into my web application ?

• Find security breaches

To: application-dev analysis

• Did the application dev use the right

authentication and authorization in

the right places ?

• Detect weak spots in the reversed

architecture

– “Because we don’t know our actual,

explicit security architecture”

– “Because we didn’t create a security

architecture up-front, or after the

implementation”

Interesting first conclusions in the project:

Shift in original focus of application providers…

When token is presented to API

Open challenge: How did you get that token ?
› Token does not specify how it was obtained:

Implicit flow

Authz code

Authz code + pkce

› Interesting for API providers

Monitoring, management, certification

How many legacy clients still active ?

How active are these

Is that dev still using that implicit flow !?

› Authorization server knows

Self-managed: check logs

As-a-service … ?

› Answers from IAM-aas providers (Twitter):

“Not standardized afaik. Your IdP may add it as a claim

if you control it to that degree. “

“You can’t derive that information from the token alone

I’m afraid. Is there a reason you need to know this?”

“Interesting one. Pretty sure our implementation

(PingFederate) would provide a technical means to

accomplish this by mapping the response type into a

token claim, but it's not a use case I've heard of before.

May I ask why you'd want to do this?”

“In Azure AD, you might able to see that client

credentials was used for an access token as the aud

would be something ending with /.default. No way to

find it out for others AFAIK.”

After the holidays:

Advanced application-level access

control research

leveraging ABAC and PBAC

Thank you!
https://distrinet.cs.kuleuven.be/

