
The OAuth 2.0 Ecosystem
Statistics & Analysis



What we did

› We tested 100+ OAuth implementations

94 deployed and publicly available services

17 OIDC providers, 77 OAuth 2.0 API providers

13 libraries and OAuth 2.0 middleware (not included in these statistics)

› We drew statistics over the sites and over the individual 

countermeasures



Supported Flows

API Providers

› 94% support Authorization Code 

flow

› 44% support Implicit flow

› 30% support Client Credentials 

flow

› 3% support Password flow

OIDC Providers

› 100% support Authorization Code 

flow

› 35% support Client Credentials 

flow

› 24% support Implicit flow

› 24% support Hybrid flow

› 6% support Device flow



Failure Rates

› Every test case in our evaluation represents one requirement 

in the OAuth specification

Of any requirement level

Test cases that are not applicable are not run

𝑓𝑎𝑖𝑙𝑢𝑟𝑒 𝑟𝑎𝑡𝑒 =
𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑒𝑑

𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒𝑠 𝑟𝑢𝑛
× 100 %



Failure Rates

API Providers

› 38.0% average failure rate 

(±6.9%)

31% must failures

40% should failures

85% may failures

OIDC Providers

› 28.0% average failure rate 

(±7.0%)

22% must failures



Failure Rates

› Popular sites do not score better (or worse)

Top 100 sites: 35.9% failure rate

Top 10000+ sites: 37.3% failure rate

› Different sites fail different tests

About 50% of the tests fail for less than 20% of the sites



Detailed Statistics

7



TLS Security

OAuth’s security relies on using TLS correctly 

› All sites supported TLS 1.2 and higher

11% of API endpoints did not support TLS 1.2 or higher

› 54% supported TLS 1.1 and lower

› All sites used a valid X.509 certificate



TLS Security

TLS must be used when sending sensitive information

› All sites redirect authorization requests to HTTPS

› 6% allowed insecure authorization code exchanges

› 5% allowed insecure API access



HTTP Security

Referrers may leak sensitive information

› 30% suppress the referrer



HTTP Security

Parameters must not be included multiple times

› Only 15% enforced this

Unknown parameters must be ignored

› 96% comply with this



HTTP Security

Authorization pages should not be framed

› 68% use an X-Frame-Options header

› 34% use Content Security Policy

› 26% send no header



HTTP Security

Sensitive information must not be cached

› 51% send Cache-Control and Pragma

› 6% send only Pragma

› 14% send only Cache-Control

› 29% allow caching



HTTP Security

Form POST parameters are preferred over URI query parameters

› Only 6% support form post response mode

OIDC requires authorization servers to support POST authorization 

requests

› Only 40% of OIDC servers support this



Client Authentication

Client Type

› 1% support only public clients

› 1% support confidential clients (crypto key)

› 98% support confidential client (password)

However, 12% do not use/require the password



Client Authentication

Authorization servers must support the Authorization header

› Support is mandatory, but only 69% support it

› Other sites use form POST



Proof Key for Code Exchange

Authorization servers must support PKCE

› Only 12% of API providers support PKCE

Mostly ignored

Sometimes disallowed



Proof Key for Code Exchange

For the API providers supporting PKCE:

› None required PKCE

› 33% supported plain PKCE

› 44% allowed very short verifiers

› 56% were vulnerable to PKCE sidestep attack1

1 https://mailarchive.ietf.org/arch/msg/oauth/qrLAf3nWRt8HAFkO49qGrPRuelo/



Proof Key for Code Exchange

Half of the OIDC sites supported PKCE

› None required PKCE

› 25% supported plain PKCE

› 75% allowed very short verifiers

› 25% were vulnerable to PKCE sidestep attack1

1 https://mailarchive.ietf.org/arch/msg/oauth/qrLAf3nWRt8HAFkO49qGrPRuelo/



Redirect URI Matching

Callback URIs must be precisely matched

› Only 48% of sites do this

Token endpoint must compare the callback URI with the one 

received in the authorization request

› Only 43% of sites do this



Authorization Codes

Authorization codes must only be used once

› 76% disallow code exchange

› 12% disallow code exchange and revoke previously granted 

access tokens

› 12% allow multiple code exchanges



Access Tokens

› Are mostly opaque (only 15% JWT)

› Are long (85% over 128 bits of entropy)

› Can often be used as URI query parameter (44%)



Refresh Tokens

› Are used by 66% of sites

› When refresh token rotation is used, refresh tokens must be single 

use 

Of these sites, only 34% prohibited exchanging the same refresh token 

multiple times

Active refresh tokens were never revoked



Access Tokens and Refresh Tokens

If refresh tokens are used, access token lifetime should be 

short

› < 1 hour: 36%

› < 8 hours and > 1 hour: 27%

› < 24 hours and > 8 hours: 10%

› > 24 hours: 27%



Token Revocation

› 83% do not support token revocation (optional)

Of those that did, 42% accept revoked refresh tokens (mandatory)



OIDC and ID Tokens

› All sites correctly included the required claims

Except the “nonce” claim (18% omitted this)

› Sending the nonce parameter is mandatory for the implicit 

flow

50% of OIDC providers do not enforce this


